

Accelerating hybrid and compact neural networks targeting
perception and control domains with coarse-grained
dataflow reconfiguration

Zheng Wang1, †, Libing Zhou2, Wenting Xie2, Weiguang Chen1, Jinyuan Su2, Wenxuan Chen2, Anhua Du2,
Shanliao Li3, Minglan Liang3, Yuejin Lin2, Wei Zhao2, Yanze Wu4, Tianfu Sun1, Wenqi Fang1, and Zhibin Yu1

1Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
2School of Microelectronics, Xidian University, Xi'an710071, China
3School of Information and Communication, Guilin University of Electronic Technology, Guilin 541004, China
4Changzhou Campus of Hohai University, Changzhou 213022, China

Abstract: Driven by continuous scaling of nanoscale semiconductor technologies, the past years have witnessed the progress-
ive advancement of machine learning techniques and applications. Recently, dedicated machine learning accelerators, espe-
cially for neural networks, have attracted the research interests of computer architects and VLSI designers. State-of-the-art accel-
erators increase performance by deploying a huge amount of processing elements, however still face the issue of degraded re-
source utilization across hybrid and non-standard algorithmic kernels. In this work, we exploit the properties of important neur-
al network kernels for both perception and control to propose a reconfigurable dataflow processor, which adjusts the patterns
of data flowing, functionalities of processing elements and on-chip storages according to network kernels. In contrast to state-
of-the-art fine-grained data flowing techniques, the proposed coarse-grained dataflow reconfiguration approach enables extens-
ive sharing of computing and storage resources. Three hybrid networks for MobileNet, deep reinforcement learning and se-
quence classification are constructed and analyzed with customized instruction sets and toolchain. A test chip has been de-
signed and fabricated under UMC 65 nm CMOS technology, with the measured power consumption of 7.51 mW under
100 MHz frequency on a die size of 1.8 × 1.8 mm2.

Key words: CMOS technology; digital integrated circuits; neural networks; dataflow architecture

Citation: Z Wang, L B Zhou, W T Xie, W G Chen, J Y Su, W X Chen, A H Du, S L Li, M L Liang, Y J Lin, W Zhao, Y Z Wu, T F Sun, W Q
Fang, and Z B Yu, Accelerating hybrid and compact neural networks targeting perception and control domains with coarse-
grained dataflow reconfiguration[J]. J. Semicond., 2020, 41(2), 022401. http://doi.org/10.1088/1674-4926/41/2/022401

1. Introduction

Recent advancements in neural networks have demon-
strated their success in a wide range of application domains,
such as computer vision, natural language processing, and
gaming engines. Although questions still exist on the appli-
ance of neural networks into further domains, there is inargu-
ably the increasing demand on the computing power to sup-
port fast-evolving network structures.

Traditionally, neural networks are mostly deployed on
CPU and GPU-based platforms, resulting in either less comput-
ing performance or huge power consumption. Recently, the
CPU-FPGA based heterogeneous programming paradigm has
also appeared to support higher performance. However, both
solutions suffer from extensive power consumption caused
by a significant amount of data movement between comput-
ing elements. Dedicated hardware accelerators have been pro-
posed to accelerate the inference phase of neural networks
such as Eyeriss[1], Google TPU-I[2] and DaDianNao[3]. Such high-
lighted architectures achieve high performance and resource
utilization with specific algorithmic-architecture co-design

techniques, such as row-stationary dataflow and systolic ar-
ray matrix multipliers. The majority of hardware optimization
techniques are proposed for the standard convolution kernel,
which accounts for 90% computing operations of the state-
of-the-art neural networks[4]. Accelerator supporting both con-
volutional and recurrent algorithmic kernels has been pro-
posed in Ref. [5] with optimization techniques on bit-width
and pattern access, which opens the research direction on ar-
chitecture for advanced hybrid neural networks.

Standard convolution plays a key role in feature extrac-
tion, its amount of computation and network parameters
have been increasing rapidly[6], which poses severe chal-
lenges in deploying standard CNNs on embedded and mo-
bile devices. To address this, recently compact CNNs such as
SqueezeNet[7] and MobileNet[8] have been designed to drastic-
ally reduce the total amount of computation while maintain-
ing similar accuracy compared to standard CNN models. For in-
stance, MobileNet reduces 27 × in computation and 32 × in
parameter size but only degrades 1% in accuracy compared
to VGG-16[9]. Conventional optimization techniques in neural
accelerators are less generalizable to compact kernels. For in-
stance, Winograd[10] and FFT-based[11] transformations are effi-
cient for 3-D filters but ineligible for pointwise (PW) convolu-
tion. Additionally, depthwise (DW) convolution has a low com-
putation to communication (CTC) ratio[12], which makes it diffi-

Correspondence to: Z Wang, zheng.wang@siat.ac.cn
Received 8 OCTOBER 2019; Revised 16 DECEMBER 2019.

©2020 Chinese Institute of Electronics

ARTICLES

Journal of Semiconductors
(2020) 41, 022401

doi: 10.1088/1674-4926/41/2/022401

http://dx.doi.org/10.1088/1674-4926/41/2/022401

cult to be executed as efficient as standard convolution.
On the other hand, the AI community has also wit-

nessed the applications of neural networks in non-perceptu-
al domains such as decision-making. In the domain of con-
trol systems, decision making through deep reinforcement
learning has shown progressive achievements. The deep Q net-
work (DQN), which was originally proposed in Ref. [13], uses
multi-layer neural networks to implement the Q-function in or-
der to eliminate the lookup-table for storing Q-values. Deep-
mind demonstrates a ground-breaking contribution in Ref.
[14] by combining CNN and DQN to realize beyond human-
level performance in Atari gaming. AlphaGo[15] and Zero[16]

are designed with deep reinforcement learning kernels as
well. Despite its increasing importance, current hardware accel-
erators have very few supports for control-related kernels.

Consequently, there is a high probability that future neur-
al networks are capable of performing end-to-end tasks in per-
ception, control, and even actuation with hybrid, compact al-
gorithmic kernels. However, current dataflow techniques
such as weight-stationary (WS), output-stationary (OS) and
row-stationary (RS)[17] only targets for fine-grained data re-
use of standard convolution. To achieve both functional sup-
port and high resource utilization, accelerator designers
should analyze characteristics of various kernels, such as data
flow and access patterns, functionalities of computing re-
sources, while minimizes the control and synchronization over-
heads among thousands of processing elements (PEs). In this
work, we propose a reconfigurable dataflow processor, which
adjusts the patterns of data flowing, functionalities of pro-
cessing elements and on-chip storages according to network
kernels, including standard and compact convolution, pool-
ing, full connection, shortcut, long short-term memory
(LSTM)[18] and state-action layer in DQN. The proposed architec-
ture increases resource utilization across multiple kernels
through coarse-grained management of dataflow, which is
complementary to other fine-grained techniques. A dedic-
ated instruction set and toolchain have been built to man-
age dynamic reconfiguration and achieve compatibility
with mainstream AI programming environments. A recon-
figurable ASIC has been designed and fabricated under
65 nm CMOS technology, with a measured power consump-

tion of 7.51 mW under 100 MHz frequency on a 1.8 × 1.8 mm2

die size.

2. Data flow for neural network kernels

2.1. Standard kernels

Fig. 1 visualizes important network layers and their inter-
connections, which form an end-to-end network targeting
both perception and control. Especially for graphical input,
concatenated convolution and pooling layers are applied as
perceptional building blocks for extracting visual features.
Model networks such as Yolo-v3 and Resnet-50 can have tens
of such layers, imitating the human visual system. For timing
sequence-dependent applications, such as video context un-
derstanding and language processing, sequences of extrac-
ted features through time are provided as input to the LSTM
layer, which extracts sequence-dependent features. Opposed
to former layers, LSTM constitutes four basic gates, naming in-
put (I), output (O), cell state (C) and forget (F) gates. While I,
O and F gates compute layer output through vector opera-
tions, C gate keeps the current layer states which are also
provided as recurrent input for the next sequence in time.

The control network starts after feature extraction layers.
In DQN, the extracted features are treated as nodes of states,
while the optimal decision needs to be chosen through
nodes of actions. The approach is to iterate through all pos-
sible actions under current states and perform regression to
find maximal or minimal output value (Q value) depending
on strategies of reinforcement learning. The procedure is rep-
resented as a state-action layer in Fig. 1. Since action nodes
need to be iterated, all computation in the following layers
needs to be iterated as well, represented as yellow dash
boxes. The fully connected layer is prevalent since the inven-
tion of the multi-layer perceptron. However, shortcut links
are often used, especially in residue networks, to improve the
accuracy of classification and regression by providing fea-
tures form layers before the current input.

Various layers differ not only in the network structures,
but also operands, operators, nonlinear functions. Table 1
summarizes the characteristics of multiple kernel layers. It is ob-
served that pooling and shortcut operate on vectors while oth-

V
e

ct
o

r
p

ro
ce

ss
in

g

I

States

ActionLSTMPoolingConvolution
Full

connection

Q

regression

Shortcut

O

C

F

Fig. 1. (Color online) Structure of hybrid neural network targeting perception and control with layer-wise algorithmic kernels.

2 Journal of Semiconductors doi: 10.1088/1674-4926/41/2/022401

Z Wang et al.: Accelerating hybrid and compact neural networks targeting perception

er kernels operate on matrix, among which convolution pro-
cesses sparse matrix and the rest kernels process dense mat-
rix. Concerning nonlinear functions, LSTM adopts simultan-
eously sigmoid and tangent while the rest matrix kernel uses
either ReLU or sigmoid.

The dataflow properties are generalized from network
structure. In convolution and fully connected layers, activa-
tions (network data) need to be shared among nodes of the
output feature map. LSTM adopts similar serial streaming
with the special case that activation streams need to be
shared among multiple gates. The state-action layer, on the
other hand, requires fast data flow generation based on the it-
eration of action nodes. Pooling and shortcut which operate
on vectors do not need to share activation for feature maps.
Therefore vector types of activation can be streamed in
parallel.

Furthermore, we analyze the functionality of the intermedi-
ate data used in multiple kernels. Due to the nature of data
sparsity, convolution and pooling are dominant by activa-
tions, while on the contrary, FC and LSTM are dominant by
weights. LSTM and State-action contain generated data for
cell states and actions, respectively. In the shortcut layer, point-
ers to activations of the previous layer need to be bookkept,
for the network to address previous data.

2.2. Compact convolutions

The essences of compact CNNs are depthwise (DW) and
pointwise (PW) convolution. As shown in Fig. 2, DW convolu-
tion utilizes a unique 2-D filter to convolve data within a
single input channel. PW convolution, on the other hand, ap-
plies a 1-D filter to perform linear combination across mul-
tiple channels. We label the dimension of input feature map
(Ifmap) by DF × DF × M where DF is the spatial height and
width, M is the number of input channels. The output fea-
ture map (Ofmap) after DW convolution has the dimension of
DF × DF × M, which is passed onto PW convolution as Ifmap.

The Ofmap of PW convolution is DF × DF × N. The number of
operations compared to standard convolution is present in
Table 2, which is evaluated in the number of multiply-and-
accumulation (MAC). For the typical DK value of three, repla-
cing standard convolution with DW and PW convolution
leads to MAC reduction up to 90%[9].

Fig. 3 visualizes the MobileNet structure, which concaten-
ates several network layers. Besides standard convolution, pool-
ing, FC and softmax layers that are available in conventional
CNN, thirteen repeated blocks of DW and PW convolution
play a crucial role in network organization. As shown in the
statistics chart, 94.85% of total operations in MobileNet is PW
convolution while DW convolution ranks the second by

M

M

DF DF DFDK

M

M

1

Input

feature maps

Internal

feature maps

Output

feature maps

Depth-wise

filters

Point-wise

filters

N

N

Fig. 2. Orientation and dimensions of compact CNN filters.

Conv standard

Conv DW

Conv PW

Avg. pooling

FC

Softmax
Network structure

Operation statistics

× 13

Type

Conv PW

Conv DW

Conv
standard

FC

OPS

94.85%

3.06%

1.91%

0.18%

Fig. 3. (Color online) Structure and operation distribution for Mobile-
Net.

Table 1. Operation characteristics among multiple standard neural network kernels.

NN Layer Convolution Pooling FC LSTM State-action Shortcut

Operands Sparse matrix Vector Dense matrix Dense matrix Dense matrix Vector
Operators Sum of product

(SoP)
Max, min, mean SoP SoP vector

multiply vector
sum

SoP Vector sum

Nonlinear functions ReLU sigmoid None ReLU sigmoid Sigmoid tangent ReLU sigmoid None
Dataflow property Serial in/out

thread-level
parallelism

Parallel in/out Serial in/out
thread-level
parallelism

Serial in/out
shared among
gates

Serial in/out
action nodes
iteration

Parallel
in/out

Buffering property Activation
dominant

Activation
dominant

Weight dominant Weight, states Weight,
states, actions

Activation
pointer

Table 2. Number of operations of standard, DW and PW convolution
layers.

Layer Filter size Input size MAC amounts
Standard
conv

DK × DK ×M × N DF × DF ×M DK ⋅ DK ⋅M ⋅ N ⋅ DF ⋅ DF

Conv DW DK × DK ×M DF × DF ×M DK ⋅ DK ⋅M ⋅ DF ⋅ DF
Conv PW × ×M × N DF × DF ×M M ⋅ N ⋅ DF ⋅ DF

Journal of Semiconductors doi: 10.1088/1674-4926/41/2/022401 3

Z Wang et al.: Accelerating hybrid and compact neural networks targeting perception

3.06%. Other compact CNNs follow similar statistics of opera-
tions, which indicates massive demand in the acceleration of
PW and DW convolution.

3. Reconfigurable dataflow processor

According to the analysis of algorithmic kernels on Sec-
tion 2, a dataflow processor is designed to achieve dynamic
functional reconfiguration through coarse-grained dataflow
management. This section describes the design methodo-
logy, micro-architecture, instruction set architecture, and asso-
ciated toolchain for model conversion from mainstream deep
learning frameworks.

3.1. Methodology of dataflow reconfiguration

To implement standard algorithmic kernels in Table 1
and possibly save hardware resources, the design of reconfigur-
able architecture should at least cover the union of different
kernels. To achieve this, the resources are maximally shared
among kernels, including PEs, data input/outputs, buffering
SRAMs and DRAM interfaces. Fig. 4 illustrates the methodo-
logy of data flow management and resource sharing, which is
also explained as the following:

Convolution: PEs, which are configured as MAC and ReLU
in function, are grouped in multiple threads, where each
thread processes data with the same row and column across
multiple channels of the output feature map. SRAMs are
mostly used for buffering thread dependent activations of
the input feature map. Weights are shared across multiple
threads. Activations are serially streamed from the individual
buffer to achieve sharing among PEs. Serial outputs from indi-
vidual threads are associated in the output buffer and str-
eamed out in parallel through SERDES and DRAM controller.

Pooling: PEs are configured as a comparator to achieve
max and min operators. Since pooling operates on vectors,
the activations fetched from DRAM are directly provided to
PE arrays without buffering, which extensively saves dynam-
ic power consumption. Both parallel input and output are util-
ized. Activations are compared through time by modifying
DRAM access addresses.

Full connection: for such weights dominant kernel,
SRAMs are configured as weight buffers while activations are
serially streamed through multiple threads. Outputs and PE
configurations are similar to convolution.

Shortcut: Similar to pooling, the kernel works on vectors.
The PEs are configured as an addition. Since two vectors are
added, both input and output shift registers are used to store
operands, which results are written to the output shift re-
gisters and written to DRAM in parallel. The pointer buffer is in-
stantiated to address both operands in DRAM.

LSTM: PEs are grouped into four sets of gates which each
set instantiates different nonlinear functions between sig-
moid and tangent. Additional vector operators and tangent
modules are used for post-processing. A mixed-mode input
style is adopted for both activation sharing within each set of
gates and fast data provision among different sets. Cell state
buffer is instantiated to keep intermediate state information.

State-action: input/outputs and PE configurations are simil-
ar to full connection. Multiple origins of activations exist, in-
cluding DRAM for conventional activations, on-chip buffer-
ing for activations of states and iterative actions.

Fig. 5 illustrates the proposed flow of data streaming for

compact convolutions. Activations are associated into
bundles. Each bundle has the size of a single read transfer of
DRAM memory, which is eight bytes here for instance. Activa-
tions in the bundle are executed in parallel on multiple hard-
ware threads. For PW convolution, bundle groups horizontal
data elements. Burst read mode of DRAM streams eight in-
put threads of data bundles vertically and simultaneously com-
putes eight output threads. Showing in Fig. 5, with only four
streams the Ofmap with the size of 16 × 16 is ready to com-
mit. On the contrary, for DW convolution, bundle vertically
groups eight data elements and streams horizontally. After
streaming multiple rows of Ifmap depending on the filter di-
mension, bundles of multiple data in Ofmap are ready to
commit. The grouping and streaming directions are in ortho-
gonal to the filter dimension, which maximally exploits com-
puting parallelism.

The alternating direction of streaming and committing is
designed to cater to the nature of alternating PW and DW
layers in compact CNN. Therefore, no extra logic and cycles
are required to re-arrange data alignment, which achieves a
high saving in execution time and hardware cost.

3.2. Microarchitecture

The microarchitecture of the proposed reconfigurable
dataflow processor is illustrated in Fig. 6. It employs a hiera-
rchical design methodology, including PE, hardware thread
and system-on-chip. This subsection introduces the individu-
al module and its design considerations.

System-on-chip: this abstraction performs system-level co-
ordination of individual threads and PEs. It is composed of
four subsystems: execution controller, direct memory access
(DMA) controller, execution threads, and buffers.

The execution controller mainly coordinates PEs and buf-
fers according to network instructions. Upon initialization, it
fetches instructions from DRAM into configuration SRAM, se-
quentially decodes each instruction and drives execution
threads to achieve targeting network functions. A central-
ized control methodology is adopted to reduce logic over-
heads and boost performance.

The DMA controller achieves multiple modes of reads
and writes between SoC and external DRAM storage. It flu-
ently transmits network configurations, weights, activations,
and results. DDR burst mode is considerably adopted to rap-
idly provide data and reduce DRAM access power. It is well-
known that memory bandwidth incurs limitation to the compu-
tational throughput. Hence, we design the DMA according to
the algorithmic properties, specified in Section 3. For instance-
, the data bundle for PW and DW convolution has the size of
elements equaling to the number of bytes per transfer under
a specific DRAM protocol. Therefore continuously burst read
and write are possible without further data buffering.

A pool of SRAM buffers is designed where each SRAM
has 8 KB size. The analysis in Section 3 inspires the SRAM
pool structure, where different algorithmic kernels have diver-
gent usage of buffering. With the assistance of the execution
controller, the SRAM is instantiated into various buffering func-
tions on the fly, determined by algorithmic kernels. For de-
tailed usage of the SRAM pool, please refer to buffering proper-
ties in Table 1.

Hardware threads: this design abstraction is introduced
for easy management of resource sharing for both data flow

4 Journal of Semiconductors doi: 10.1088/1674-4926/41/2/022401

Z Wang et al.: Accelerating hybrid and compact neural networks targeting perception

and weights. Activation inputs and outputs are built using
shift registers to achieve both data sharing and fewer power
overheads due to single fan-out and reduced load capacit-
ances. Shift registers can be dynamically configured as serial
and parallel modes according to Fig. 4. In contrast to the

single direction of the in-data stream, the out-data stream is
bidirectional to facilitate vector computation used in short-
cut kernel. Multiple PEs are coordinated through thread-level
finite state machine (FSM) to process activations and weights
in a pipeline fashion. The weights are streamed-in from the

Output buffer & SERDES Output buffer &
 SERDES

PERELU

RELU
DRAM

MC

&

PHY

RELU
S

e
ri

a
l i

n
p

u
t

S
e

ri
a

l o
u

tp
u

t

RELU

(a) Convolutional layer

Data

buffer

Weight

buffer

PE

PE

PE

PE

DRAM

MC

&

PHY

P
a

ra
ll

e
l i

n
p

u
t

P
a

ra
ll

e
l o

u
tp

u
t

(b) Pooling layer

PE

PE

PE

PERELU

RELU

RELU

S
e

ri
a

l i
n

p
u

t

S
e

ri
a

l o
u

tp
u

t

RELU

Data

buffer

Buffer

ctrl

Buffer

ctrl

BufferBuffer

time

time

PE

PE

PE

PERELU

RELU

RELU

RELU

PE

PE

PE

Output buffer & SERDES Output buffer & SERDES

PERELU

RELU

DRAM

MC

&

PHY

RELU

S
h

a
re

d
 s

e
ri

a
l i

n
p

u
t

S
h

a
re

d
 s

e
ri

a
l i

n
p

u
t

S
e

ri
a

l o
u

tp
u

t

RELU

(c) Fully connected layer

Weight

buffer

Weight

buffer

PE

PE

PE

PE

DRAM

MC

&

PHY
P

a
ra

ll
e

l i
n

p
u

t

P
a

ra
ll

e
l i

n
p

u
t

P
a

ra
ll

e
l o

u
tp

u
t

(d) Residue shortcut layer

PE

PE

PE

PERELU

RELU

RELU

S
e

ri
a

l o
u

tp
u

t

RELU

Buffer

ctrl

Buffer
Pointer

buffer

Access

address
Buffer

ctrl

PE

PE

PE

Output buffer & SERDES

PERELU

RELU

DRAM

MC

&

PHY

RELU

S
h

a
re

d
 s

e
ri

a
l i

n
p

u
t

S
h

a
re

d
 s

e
ri

a
l i

n
p

u
t

S
e

ri
a

l o
u

tp
u

t

RELU

(f) State-action layer

Weight

buffer

Weight

buffer

PE

PE

PE

PERELU

RELU

RELU

S
e

ri
a

l o
u

tp
u

t

RELU

Buffer

ctrl

On-chip
iteration

Action
buffer

PE

PE

PE

PERELU

RELU

RELU

RELU

PE

PE

PE

Output buffer & SERDES

PE group
sigmoid

sigmoid

sigmoid

tanh tanh

Output gate

PE group

PE group

PE

group

Input gate

Forget gate

Cell
gateDRAM

MC

&

PHY

M
ix

e
d

-m
o

d
e

 in
p

u
t

P
a

ra
ll

e
l o

u
tp

u
t

(e) LSTM layer

Weight
buffer Cell state

buffer

State
buffer

Buffer

ctrl

Fig. 4. (Color online) Reconfiguration of dataflow, PE and storage functionalities for standard kernels.

Journal of Semiconductors doi: 10.1088/1674-4926/41/2/022401 5

Z Wang et al.: Accelerating hybrid and compact neural networks targeting perception

1st commit 2nd commit

3rd commit 4th commit

1st stream

2nd stream

Ifmap DW convolution Ofmap DW convolution

3rd stream

4th stream

1
st s

tr
ea

m
3

rd s
tr

ea
m

2
nd s

tr
ea

m
4

th s
tr

ea
m

Ifmap PW convolution Ofmap PW convolution

Date bundle Date bundle

D
at

e b
undle

D
at

e b
undle

D
at

e b
undle

s a
ft

er r
e-a

lig
nm

ent

Date bundles after re-alignment

1
st c

om
m

it

2
nd c

om
m

it
3

rd c
om

m
it

4
th c

om
m

it

Fig. 5. (Color online) Reconfiguration of dataflow for pointwise (PW) and depthwise (DW) convolution kernels.

To host

PCl-e MC & PHY

T
h

re
a

d

C
o

n
fi

g
s

W
e

ig
h

ts
A

ct
iv

a
ti

o
n

R
e

su
lt

s

T
h

re
a

d

T
h

re
a

d

T
h

re
a

d

T
h

re
a

d

T
h

re
a

d

T
h

re
a

d

T
h

re
a

d

T
h

re
a

d

T
h

re
a

d

T
h

re
a

d

T
h

re
a

d

Th
re

ad

B
u

ff
e

ri
n

g
 F

S
M

D
M

A
 c

o
n

tr
o

l

Th
re

ad
Th

re
ad

T
h

re
a

d

SoC

FSM

Core FSM

Synchronized weights

In
-d

a
ta

 s
tr

e
a

m

O
u

t-
d

a
ta

 s
tr

e
a

m

D
a

ta
_

in
1

D
a

ta
_

in
2

D
a

ta
_

o
u

t

T
h

re
a

d

PE

PE

PE

PE

ReLU

Ctrl_in

Weight_in

CTRL

REG

Processing element (PE)

Sigmoid

Tanh

Bypass

PE

PE

PE

PE

CFG

SRAM

DDR

DRAM

Off chipParallel wavefront

Serial wavefront

S R A M

S R A M

S R A M

S R A M

System-on-chip

Activate

De-

coder

DDR
MC
&

PHY

Done

Fig. 6. (Color online) Microarchitecture of proposed reconfigurable dataflow processor.

6 Journal of Semiconductors doi: 10.1088/1674-4926/41/2/022401

Z Wang et al.: Accelerating hybrid and compact neural networks targeting perception

SRAM pool in the SoC, where individual PEs can receive differ-
ent weight streams.

Processing elements: To efficiently compute kernel-de-
pendent functions, PE is compactly designed to achieve re-
quired operators. It facilitates both matrix and vector compu-
tation through both data input ports and one weight input
port. The Sigmoid and Tangent modules are designed based
on the linear approximation technique in Ref. [19]. The con-
trol input receives opcode from thread-level FSM to config-
ure multiplexers to realize kernel-dependent operators.

3.3. Instruction set and toolchain

Customized instruction set architecture for the proposed
processor is designed, supporting neural network al-
gorithmic kernels in Section 3. As shown in Fig. 7, instruc-
tions have a length of 96 bits and contain divergent fields
across instruction types. In general, the proposed ISA spe-
cifies the operator (opcode in first five bits), properties of in-
put and output operands, quantization bit for activation and
weight addressing index from DRAM. Address for activation
is not necessary for the majority of layers since the following
layer reads activations from the previous layer by default.

For convolution and pooling, dimension descriptions on

Ifmap, Ofmap, and filters are specified, as well as stride and
padding properties. Convolution modes of standard, PW and
DW are automatically decoded in micro-architecture accord-
ing to filter dimensions. Pooling instruction contains the stra-
tegy field for choosing between max, min, and average pool-
ing.

The nonlinear function layer can be specified among
ReLU, sigmoid, tangent, and bypass. The state-action layer con-
tains an extra field for size of action nodes, strategy selection,
plus the probability of random action taking (epsilon greedy)
and associated random number seed. The details of DQN
architecture and controlling strategy is referred to Ref. [20].

The shortcut layer operates on two vector operands;
hence, their activation addressing (pointer) and sizes need to
be specified in the instructions. LSTM layer contains fields of
sequence-dependent cell state nodes besides regular input
nodes.

The design methodology of the proposed architecture fa-
vors an ASIC design manner instead of a CPU centric one. Typ-
ically ASIC adopts a finite state machine for control flow in-
stead of RISC-style instructions in the CPU. The instruction or
configuration in ASIC tends to guide the state transition from
higher abstraction, to realize the design of multi-mode func-

Parse
 network

layers

Supported
kernel?

Kernel cfg

extraction

Instruction

translation

Assembly

generation

Parse all
layers?

Next
layer

Keras

model (.h5)

Complete

Parse
 network
 weights

Supported
kernel?

Weights

extraction

Weights
 channel first
 alignment

Weights file

generation

Parse all
layers?

Next
layer

Convolution:

Pooling:

Full connection:

Nonlinear function:

Shortcut:

No

Yes

Yes

No

LSTM:

Float to int 8

 quantization

Instruction generation Weights extraction

10001 Ifmap w Ifmap h Ifmap c Ofmap w Ofmap h Ofmap c

Stride size Padding Quant pos .Weight starting addressKernel cfg

0 4 5 14 15 24 25 34 35 44 45 54 55 64

65 67 68 69 70 71 73 95

10010 Ifmap w Ifmap h Ofmap w Ofmap h Reserved

ReservedStride size StrategyKernel cfg

4 5 14 15 24 25 34 35 44 45

67 68 69 70 71

0 64

65 95

Output nodes count10011 Input nodes count

Weight starting addressQuant pos.

4 5 34 35

70

0 64

65 95

Reserved10100

Reserved

4 50 9 10 64

Mode select

65 95

RF strategy10101 Input state nodes count Action nodes count

 Random seed Weight starting addressGreedy prob.Output nodes count

4 5 34 35 44 45

61 62

State-action:
0 47

48 77 7869 70 95

10110

Reserved

4 5 24 25 56

88 89

Input nodes count
4 5 34 35

70 71

0 14 15

57 95

 1st vector size 2nd vector size 1st vector pointer

2nd vector pointer

0
11000

42 43
Cell state nodes count

51
Output nodes count

52 73 74 95

Reserved Weight starting address

74

72

71 73 74
Reserved

Operator
90 91

Quant pos

Yes

No

Yes

No

Fig. 7. (Color online) Instruction set architecture (ISA) and developing toolchain.

Journal of Semiconductors doi: 10.1088/1674-4926/41/2/022401 7

Z Wang et al.: Accelerating hybrid and compact neural networks targeting perception

tional circuits. Consequently, the customized layer-wise ins-
tructions facilitate data stream reconfiguration according to
Figs. 4 and 5. Compared to traditional RISC style ISA, such
high-level ISA constructs the abstraction layer which leaves
fine-grained operation management to the controller state ma-
chine in the processor and significantly simplifies the compila-
tion flow of neural networks.

The developing tool flow converts the state-of-the-art net-
work model to deployable format on proposed architecture.
Taking Keras network h5 model[21] for instance, two separate
branches of toolchains generate network instructions and
weights by converting corresponding members. For unconvert-
ible instruction such as a state-action layer, a graphical inter-
face has been designed for manual input of network specifica-
tions. For weights conversion, the proposed architecture ad-
opts channel last data alignment for both weights and activa-
tion to improve performance[22] and approach in Ref. [23] for
statistical quantization of layer-wise activations. The reason
for the separate flow of weight preparation is to modify the
standard weight format for maximal usage of DRAM burst ac-
cess mode in order to reduce memory access power and
latency. After the format transformation of weights, the archi-
tecture exploits simple burst-based streaming instead of soph-
isticated data flow management.

3.4. Operation management

The internal finite state machine contains more than 100
states for activation/weight buffering, synchronization of mul-
tiple threads and processing with high utilization of PEs. For
brevity, the FSM is not explicitly described in this section. In-
stead, phases of operations are summarized below and also
presented in Fig. 8.

Initialization phases: Such phases load network instruc-
tions, weights and input activation from the host machine to
DRAM of the processor with specific locations for all three
types of data. The interface with the host can be one of the
SERDES such as PCI-e. Afterwards, the instructions are loaded
from DRAM to CFG buffer in the SoC. Currently an 8 kB size
of CFG buffer is deployed to hold a maximum of 682 layer net-
work instructions, which is sufficient for mainstream artificial
neural networks.

Computation phases: The SoC controller fetches, de-
codes each network instruction and reconfigures the data-
flow according to Figs. 4 and 5. The duration of reconfigura-
tion takes only eight clock cycles including fetch and decode.
Subsequently, weights for corresponding network layer and in-
put activations are streamed into individual threads and pro-
cessed by PEs. Weights and activations are streamed with an
interleaved manner to maximally exploit the length of burst
access of DRAM. Once upon completion of the network layer,
the controller iterates onto the next layer and continues re-
configuration and data streaming. Intermediate results are

streamed to and from DRAM without external manipulation.
Output phases: When the last network layer is complete,

the controller streams multiple batches of results to DRAM.
Once all results are available, they are streamed from DRAM
to host through SERDES. The next batch of input activations
is ready to be streamed-in after the output of the current
result.

4. Experiments

4.1. Design methodology

The demonstrated architecture with 108 kB on-chip
SRAMs and 16 PEs fitting in one single thread is designed com-
pletely in Verilog and simulated using Modelsim to character-
ize performance on individual network kernels. Logic synthes-
is by Design Compiler is carried out under UMC CMOS 65 nm
low-leakage technology library. Placement and routing are per-
formed by Innovus to generate layout. Calibre is for physical
verification and sign-off. The prototype chip has been fabric-
ated by UMC through a multi-project wafer (MPW) service
provided by Europractice.

Currently, IPs for DRAM and PCI-e interfaces are missing
in the taped-out chip. To verify the designed DMA controller
and DRAM data access, simulation models of 512 MB DDR3
DRAM, memory controller and PHY (MIG) are generated us-
ing Xilinx ISE with a DQ width of 16 bits and DDR frequency
of 800 MHz. Opal Kelly Frontpanel technology[24] is used to
replace the PCI-e IP for interfacing with the host machine
through FPGA.

The exemplary design on FPGA contains 256 PEs fitting
in 16 hardware thread, 18 × 6 kB on-chip SRAM buffers, includ-
ing 16 reconfigurable SRAM blocks, one configuration SRAM
and one special purpose SRAM. The dimensions of PEs and
SRAMs are chosen to match the data width provided by the
DRAM for better utilization of off-chip memory bandwidth.

Toolchains for network model conversion is developed in
Python. Currently, the Tensorflow Keras h5 model is suppor-
ted, while integration with Caffee and Darknet frameworks
are under development. After DRAM calibration, converted net-
work configuration, inputs, and weights are downloaded in-
to specific address spaces in DRAM through Frontpanel and
DMA controller in the SoC. Upon completion of model down-
loading, the SoC begins layer-wise processing according to re-
configurable dataflow described in Section 3. Benchmarks are
chosen from Keras framework in Python and neural network
toolboxes in MATLAB.

4.2. Performance analysis

Three network structures have been demonstrated to
analyze the performance of the proposed architecture: First,
MobileNet with hybrid kernels of standard, PW and DW convo-
lutions, pooling and full connection. Second, maze walk-

Load insn, weights,

data from PCI-e to

DRAM

Initialize insn from

DRAM to IC

Parse insn and load layer

weights from DRAM to IC

Activation streaming

(Figs. 4 and 5)

between DRAM and IC

Onto next layer

Iterate upon

layer

completion

All layers

complete

Result output

from DRAM

to PCI-e

Result

write back

from IC to DRAM

Fig. 8. (Color online) Operational phases of proposed architecture.

8 Journal of Semiconductors doi: 10.1088/1674-4926/41/2/022401

Z Wang et al.: Accelerating hybrid and compact neural networks targeting perception

through by DQN with state-action and full connection ker-
nels. Third, sequence classification with hybrid kernels of
LSTM and full connection.

MobileNet: As introduced in Section 2.2, MobileNet ad-
opts iteratively compact convolution kernels, which account
for 97.91% of computation in the number of MACs. Table 3
shows the profiled execution latency of proposed design
throughout various layers of MobileNet, benchmarked bet-
ween multi- and single-threaded architecture, using an FPGA
prototype with 256 PEs and DRAM support.

The total network latency with multi-threading is only
7.6% of the single-threaded design proposed in Ref. [22] un-
der the same frequency of 100 MHz. Such acceleration is
mainly due to the following factors. In DW convolution, maxim-
al utilization of DRAM bandwidth and processing elements
do not reach a high level. However, the 2-D filters across mul-
tiple channels are fetched from DRAM in a burst manner and

computed with data elements of a bundle in parallel, which
consequently leads to a 21.9× saving of latency. On the oth-
er hand, PW convolution achieves a 16× speed-up due to max-
imal 100% usage of memory bandwidth and PEs, which is
only possible with the assist of continuously addressed data
bundles in burst mode.

Besides compact convolution layers, the first layer of stand-
ard convolution is processed only in the single thread due to
the irregular addressing for three channel RBG feature maps,
which incurs only 6.7% of PE utilization. Ongoing work is
targeting the issue of irregular addressing with multi-function-
al on-chip SRAMs. The pooling layer is executed with parallel
input and output stream on a single thread as shown in
Fig. 4(b). A fully connected kernel utilizes 16 PEs similar to a
single-thread design. The parallelism is limited by the fact
that the weight stream for individual output node in the FC
layer cannot be shared among PEs and noted that the pro-

2_layers: 128 (s)-94-1
5_layers: 128 (s)-64-32-16-32-1
10_layers: 256 (s)-128-112-96-80
 -64-48-32-16-16-1

CPU

1 2 4 6

Our design

1000

500
100

70
60
50

Q
 it

er
at

io
n

tim
e

(m
s)

40
30
20
10

2

1

Fig. 9. (Color online) Comparison of Q iteration time between proposed architecture and host machine (CPU)[27].

Table 3. Benchmark of performance for MobileNet with proposed architecture[25].

Layer type Input size #. MACs
Multi-threaded streaming architecture @ 100 MHz

Single-threaded
latency (ms)[24]Max BW

utilization
Max PE
utilization #. stream ns / stream Latency (ms)

Conv0 Std. 224 × 224 × 3 10.84M 3% 6.70% 25088 3340 83.8 83.8
Conv1 DW 112 × 112 × 32 3.61M 10% 6.70% 25088 2080 17.4 380.5

Conv1 PW 112 × 112 × 32 25.69M 100% 100.00% 3136 1835 5.8 92.1

Conv2 DW 112 × 112 × 64 1.81M 10% 6.70% 12544 2080 8.7 190.2

Conv2 PW 56 × 56 × 64 25.69M 100% 100.00% 1568 3520 5.5 88.3

Conv3 DW 56 × 56 × 128 3.61M 10% 6.70% 25088 2080 17.4 380.5

Conv3 PW 56 × 56 × 128 51.38M 100% 100.00% 1568 6890 10.8 172.9

Conv4 DW 56 × 56 × 128 0.90M 10% 6.70% 6272 2080 4.3 95.1

Conv4 PW 28 × 28 × 128 25.69M 100% 100.00% 784 6890 5.4 86.4

Conv5 DW 28 × 28 × 256 1.81M 10% 6.70% 12544 2080 8.7 190.2

Conv5 PW 28 × 28 × 256 51.38M 100% 100.00% 784 13630 10.7 171

Conv6 DW 28 × 28 × 256 0.45M 10% 6.70% 3136 2080 2.2 47.6

Conv6 PW 14 × 14 × 256 25.69M 100% 100.00% 416 13630 5.7 90.7

Conv7-11DW 14 × 14 × 512 0.90M 10% 6.70% 6272 2080 4.3 95.1

Conv7-11PW 14 × 14 × 512 51.38M 100% 100.00% 416 27110 11.3 180.4

Conv12 DW 14 × 14 × 512 0.23M 10% 6.70% 1568 2080 1.1 23.8

Conv12 PW 7 × 7 × 512 25.69M 100% 100.00% 256 27110 6.9 111

Conv13 DW 7 × 7 × 1024 0.45M 10% 6.70% 3136 2080 2.2 47.6

Conv13 PW 7 × 7 × 1024 51.38M 100% 100.00% 256 54070 13.8 221.5

Avg Pool 7 × 7 × 1024 0.05M 10% 6.70% 64 1767 0.1 0.1

FC 1 × 1 × 1024 1.02M 55% 6.70% 63 90218 5.7 5.7

Total — 569M — — — — 294.3 3856.5

Journal of Semiconductors doi: 10.1088/1674-4926/41/2/022401 9

Z Wang et al.: Accelerating hybrid and compact neural networks targeting perception

cessing latency considers not only streaming of activation
but also weights, which accounts for ~60% of latency for full
connection.

Deep reinforcement learning: a typical usage of DQN is
maze walking, where the intelligent agent learns to walk to-
wards the destination by picking right directions at the cross-
road and also avoiding barriers. To model maze walking with
the state-action layer in DQN, the actions for the agent upon
choices are modeled as discrete action nodes, where states
are modeled with whether the agent's faces surrounded barri-
ers in different directions. For details on modeling maze walk-
ing with DQN, the readers are referred to Ref. [26].

After modeling, we tune the sizes of state and action
space and compare the computation time consumed by differ-
ent structures of the DQN network and the dimensions of the
action space. As shown in Fig. 9, one, two, four and six nodes
of action space are tested on the 2-, 5-, and 10-layer network,
while state space is chosen between 128 and 256 nodes. For
all tested action space, the on-chip Q iterative time of all
three network structures is less than 2 ms. Such iteration time
slightly increases with the dimension of action space as well
as the network size.

We profile the Q iteration time for the same configura-
tion of network and action space on the host machine with
the Intel i7 processor. MATLAB with Neural Network Toolbox
with the feature of runtime profiling is used for benchmark-
ing. As shown in Fig. 5, the proposed architecture with on-
chip Q iteration achieves at least 100 × speed-up compared
to the host machine for all configurations, demonstrating the
advantage of the proposed architecture for decision network.

Sequence classification: the testing example employs
sensor data obtained from smartphone worn on the body[30].
The data is trained with an LSTM network to recognize the
activity of the wearer given time series representing accelero-
meter readings in three different directions. The network com-
bines the LSTM layer and full connection layer, followed by
the Softmax layer for classification, where the first two layers
are used for performance analysis.

Table 4 presents the testing network with layer-wise struc-
ture specifications. Performance is benchmarked on the

1.8 mm
(a) (b)

Fig. 10. (Color online) (a) ASIC layout with 16 reconfigurable PEs. Logics (middle) surrounded by 18 SRAM blocks. (b) Micrograph of taped-out
chip with UMC CMOS 65 nm low-leakage technology.

(a) Front view (b) Rear view

Fig. 11. (Color online) Views of the testing board. The front view con-
tains testing IC under CLCC84 packaging and socket. The rear view con-
tains FPGA for interfacing IC with the host machine.

Table 4. Benchmark of performance for LSTM networks among three processing architectures.

Network layer specification
1st LSTM layer 2nd LSTM layer (if need) 1st FC layer (if need) 2nd FC layer

In nodes: 3, Out nodes:
12, Recurrent nodes: 48

In nodes: 12, Out nodes:
12, Recurrent nodes: 48 In nodes: 12, Out nodes: 12 In nodes: 12, Out nodes: 5

Network
Performance (ms/sample) Average power

consumption1 LSTM + 1 FC 2 LSTM + 1 FC 2 LSTM + 2 FC
CPU Intel i7-8700 @3.20 GHz 11.981 22.362 23.962 60–70 W
CPU Intel i7 w. GPU NVIDIA
GTX 1050

2.87 4.94 5.74 50–70 W

Proposed design with 16
PEs @ 100 MHz *

1.033 1.157 1.957 30–50 mW

* Simulation result, not account for data transferring between disk storage and DRAM.

10 Journal of Semiconductors doi: 10.1088/1674-4926/41/2/022401

Z Wang et al.: Accelerating hybrid and compact neural networks targeting perception

following three platforms: Intel i7 CPU and NVIDIA GTX GPU
with measured latency in MATLAB neural network toolbox
and proposed design of 16 PEs with simulated latency in Mod-
elsim. It is observed that for all network specifications, the pro-
posed design achieves improved performance compared to
CPU and GPU. It is noticed that the measurement results
from MATLAB consider huge latency of data transfer between
disk, main memory, and operating system, whereas our
design is proposed as a standalone system. However, future
LSTM networks tend to be deployed on sensors and process
data directly from DRAM, which is close to the design prin-
ciple of our design. CPU and GPU consume three orders of
magnitudes higher power than the proposed design, prov-
ing the energy efficiency of ASIC for hybrid neural networks.

4.3. Physical results

The reconfigurable ASIC has been taped-out with UMC
CMOS 65 nm low-leakage technology. Fig. 10 presents the
chip’s layout and micrograph. The ASIC has a die size of
1.8 × 1.8 mm2 including 80 IO pads, 16 PEs, and 18 SRAM
blocks. The driving voltage for the core and IO is 1.2 and 2.5 V
respectively. The chip communicates with testing FPGA
board using customized 8-bit input and output data ports.

Regarding the layout, SRAM IPs with 6 kB each occupy
~50% of the core’s die area. The size of SRAM IP is chosen to
fit the number of weights per channel of typical convolution
Ofmap (Up to 3 × 3 × 512 filter dimension). Orientations of

SRAMs are carefully adjusted so that controlling logic and PEs
can be placed in the middle area, with reduced routing over-
head. The current ASIC only contains 16 PEs. However, the
vast die area with fillers (blue) suggests that a huge amount
of extra PEs can be placed on the die, which should effi-
ciently share the pool of SRAMs with the design methodolo-
gies introduced in Section 3. Estimates through Innovus im-
ply an average power consumption of 55.4 mW on the die of
256 PEs and the same 18 SRAMs, which boosts the energy effi-
ciency to 0.92 TOPs/W with further improvement possibilities.

From a functional perspective, the ASIC supports reconfig-
uration between standard convolution, max/min pooling,
and full connection. Layer-wise kernel type, activation and fil-
ter dimension, nonlinear functions can also be reconfigured us-
ing ISA in Section 3.3.

As shown in Fig. 11, the testing board has been de-
signed to integrate the socket of the CLCC84 chip package
and FPGA interfacing with a host machine from Ref. [24]. The
testing infrastructure is demonstrated in Fig. 12, where Py-
thon APIs are used to transmit/receive signals, and oscillo-
scopes are equipped for measuring signal voltages and core
currents.

Regarding runtime power consumption, we measure the
core current by deploying five layer neural networks, as
shown in Fig. 13. It is observed that two convolutional layers
incur long execution time and large current. Pooling layers
have a relatively shorter time and smaller current, while the

Current measurement

Testing chip & PCB Signal TX & RX

Signal measurement

Fig. 12. (Color online) Testing infrastructure with measurement of both signal voltages and currents.

V1

I1 500 μA/

V/

W/P1

m1 m2

Initialization

Scope Stopped

m1

1.60 mA

−17 μs

m2

2.09 mA

2.8 ms

Delta

0.48 mA

2.8 ms (352.2 Hz)

Min.

1.60 mA

−20 μs

Avg.

2.37 mA

2.8 ms

Max.

2.77 mA

2.8 ms

1.0 ms/d 2.0 ms Single Current 1

Conv1 Conv2 FC

IdlePool1 Pool2

Fig. 13. (Color online) Runtime current measurement across different phases of operation under 30 MHz frequency.

Journal of Semiconductors doi: 10.1088/1674-4926/41/2/022401 11

Z Wang et al.: Accelerating hybrid and compact neural networks targeting perception

FC layer has high power but a very short running time. Both
initialization and idle phases consume similar currents.
Table 5 shows the statistics of average power consumption
for each operating phase under different running frequen-
cies. At the design frequency of 100 MHz, the largest power
value 8.97 mW is consumed by the FC layer, while the aver-
age power throughout operating phases of neural networks
(form Conv1 to FC) is 7.51 mW, which implies the energy effi-
ciency of 426 GOPs/W.

Table 6 shows a comparison between our work and oth-
er state-of-the-art works. Our taped-out IC with 16 PEs
achieves the minimal measured power 7.51 mW among oth-
er designs, which is highly customized to ultra-low power ap-
plications. In contrast, the multi-threaded version with 256
PEs has the estimated energy efficiency of 0.92 TOPS/W,
which is comparable to the state-of-the-art designs.

5. Conclusion

Neural networks have demonstrated tremendous suc-
cess in a wide range of application domains, which drives re-
search on specific AI accelerators in the past five years. Major-
ity of customized AI accelerators targets convolutional neur-
al network, while hybrid networks with non-standard layers
have been purposed for applications beyond vision-based per-
ception. In this work, we purpose a reconfigurable dataflow
processor targeting multiple algorithmic kernels for both per-
ception and control. Using the supported kernels, not only
standard CNN but also compact CNN, ResNet, LSTM and deep
reinforcement learning algorithms can be constructed.

The architecture is designed with a separate pool of PEs
and SRAMs, whose functionalities are instantiated based on lay-
er description through custom-designed ISA. Toolchains have
been built to achieve compatibility with state-of-the-art AI
programming framework. Experiments on profiling for three
types of neural networks demonstrate the performance, re-
source utilization and special design features against the In-
tel processor. The taped-out ASIC under 65 nm UMC CMOS
technology with 16 reconfigurable PEs is also demonstrated.

Future work includes optimization techniques regarding
resource utilization, power consumption, reliability based on
the design methodology. Further techniques to maximize re-
source sharing with low controlling overhead is the key to
the enhancement of energy efficiency.

Acknowledgments

This work was supported by NSFC with Grant No.
61702493, 51707191, Science and Technology Planning
Project of Guangdong Province with Grant No.
2018B030338001, Shenzhen S&T Funding with Grant No.
KQJSCX20170731163915914, Basic Research Program No.
JCYJ20170818164527303, JCYJ20180507182619669, and SI-
AT Innovation Program for Excellent Young Researchers with
Grant No. 2017001.

References

Chen Y, Krishna T, Emer J, et al. Eyeriss: An energy-efficient recon-
figurable accelerator for deep convolutional neural networks.
IEEE J Solid-State Circuits, 2017, 52, 127

[1]

Jouppi N, Young C, Patil N, et al. In-datacenter performance analys-
is of a tensor processing unit. ACM/IEEE International Symposi-
um on Computer Architecture, 2017, 1

[2]

Chen Y, Tao L, Liu S, et al. DaDianNao: A machine-learning super-
computer. ACM/IEEE International Symposium on Microarchitec-
ture, 2015, 609

[3]

Cong J, Xiao B. Minimizing computation in convolutional neural
networks. Artificial Neural Networks and Machine Learning, 2014,
281

[4]

Yin S, Ouyang P, Tang S, et al. A high energy efficient reconfigur-
able hybrid neural network processor for deep learning applica-
tions. IEEE J Solid-State Circuits, 2017, 53, 968

[5]

Russakovsky O, Deng J, Su H, et al. ImageNet large scale visual re-
cognition challenge. Int J Comput Vision, 2015, 115, 211

[6]

Iandola F, Han S, Moskewicz M, et al. SqueezeNet: AlexNet-level ac-
curacy with 50x fewer parameters and < 0.5 MB model size. arXiv:
1602.07360, 2016

[7]

Howard A, Zhu M, Chen B, et al. MobileNets: Efficient convolution-
al neural networks for mobile vision applications. arXiv:
1704.04861, 2017

[8]

Simonyan K, Zisserman A. Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556,
2014,

[9]

Yang C, Wang Y, Wang X, et al. A reconfigurable accelerator
based on fast winograd algorithm for convolutional neural net-
work in internet of things. IEEE International Conference on Sol-
id-State and Integrated Circuit Technology, 2018, 1

[10]

Vasilache N, Johnson J, Mathieu M, et al. Fast convolutional nets
with fbfft: A GPU performance evaluation. arXiv: 1412.7580, 2014

[11]

Guo K, Zeng S, Yu J, et al. A survey of FPGA-based neural net-[12]

Table 5. Runtime power consumption in mW for different phases and frequencies.

Frequency (MHz) Initialize Conv1 Pool1 Conv2 Pool2 FC Idle Avg. (conv1-fc)

30 1.92 2.84 2.58 3.04 2.71 3.32 1.92 2.62
60 3.32 5.29 4.76 5.47 5.09 5.74 3.32 4.71
100 5.19 8.56 7.67 8.71 8.26 8.97 5.19 7.51

Table 6. Comparison of physical properties with state-of-the-art designs.

Parameter Eyeriss[28] ENVISION[29] Thinker[30] This work This work

Technology (nm) 65 28 65 65 65
Core area (mm2) 12.25 1.87 19.36 3.24 3.24
Bit precision (b) 16 4/8/16 8/16 8 8
Num. of MACs 168 512 1024 16 256
Core frequency (MHz) 200 200 200 100 100
Performance (GOPS) 67.6 76 368.4 3.2 51.2
Power (mW) 278 44 290 7.51 (measured) 55.4 (estimated)
Energy efficiency 166.2 GOPS/W 1.73 TOPS/W 1.27 TOPS/W 426 GOPS/W 0.92 TOPS/W

12 Journal of Semiconductors doi: 10.1088/1674-4926/41/2/022401

Z Wang et al.: Accelerating hybrid and compact neural networks targeting perception

http://dx.doi.org/10.1109/JSSC.2016.2616357
http://dx.doi.org/10.1109/JSSC.2017.2778281
http://dx.doi.org/10.1007/s11263-015-0816-y
http://dx.doi.org/10.1109/JSSC.2016.2616357
http://dx.doi.org/10.1109/JSSC.2017.2778281
http://dx.doi.org/10.1007/s11263-015-0816-y

work accelerator. arXiv: 1712.08934, 2017
Mnih V, Kavukcuoglu K, Silver D, et al. Playing atari with deep rein-
forcement learning. arXiv: 1312.5602, 2013

[13]

Mnih V, Kavukcuoglu K, Silver D, et al. Human-level control
through deep reinforcement learning. Nature, 2015, 518, 529

[14]

Silver D, Huang A, Maddison C, et al. Mastering the game of Go
with deep neural networks and tree search. Nature, 2016, 529,
484

[15]

Silver D, Schrittwieser J, Simonyan K, et al. Mastering the game of
Go without human knowledge. Nature, 2017, 550, 354

[16]

Chen Y, Emer J, Sze V. Eyeriss: A spatial architecture for energy-effi-
cient dataflow for convolutional neural networks. ACM/IEEE Inter-
national Symposium on Computer Architecture, 2016, 44, 367

[17]

Gers F, Schmidhuber J, Cummins F. Learning to forget: Continual
prediction with LSTM. 9th International Conference on Artificial
Neural Networks, 1999, 850

[18]

Basterretxea K, Tarela J, Del C. Approximation of sigmoid func-
tion and the derivative for hardware implementation of artificial
neurons. IEE Proc Circuits, Devices Syst, 2004, 151, 18

[19]

Sutton R, Barto A. Reinforcement learning: An introduction. MIT
Press, 2018

[20]

Gulli A, Sujit P. Deep learning with Keras. Packt Publishing Ltd,
2017

[21]

Li S, Ouyang N, Wang Z. Accelerator design for convolutional neur-
al network with vertical data streaming. IEEE Asia Pacific Confer-

[22]

ence on Circuits and Systems, 2018, 544
Guo Y. Fixed point quantization of deep convolutional networks.
International Conference on Machine Learning, 2016, 2849

[23]

Opalkelly product manual. https://opalkelly.com/products/front-
panel

[24]

Chen W, Wang Z, Li S, et al. Accelerating compact convolutional
neural networks with multi-threaded data streaming. IEEE Com-
puter Society Annual Symposium on VLSI, 2019, 519

[25]

MitchellSpryn solving a maze with Q learning. www.mitchell-
spryn.com/2017/10/28/Solving-A-Maze-With-Q-Learning.html

[26]

Liang M, Chen M, Wang Z. A CGRA based neural network infer-
ence engine for deep reinforcement learning. IEEE Asia Pacific Con-
ference on Circuits and Systems, 2018, 519

[27]

Chen Y, Krishna T, Emer J, et al. Eyeriss: An energy-efficient recon-
figurable accelerator for deep convolutional neural networks.
IEEE International Solid-State Circuits Conference (ISSCC), 2016,
127

[28]

Moons B, Uytterhoeven R, Dehaene W, et al. ENVISION: A 0.26-to-
10 TOPS/W subword-parallel dynamic-voltage-accuracy-fre-
quency-scalable convolutional neural network processor in 28
nm FDSOI. IEEE International Solid-State Circuits Conference (IS-
SCC), 2017, 246

[29]

Yin S, Ouyang P, Tang S, et al. 1.06-to-5.09 TOPS/W reconfigur-
able hybrid-neural-network processor for deep learning applica-
tions. Symposium on VLSI Circuits, 2017

[30]

Journal of Semiconductors doi: 10.1088/1674-4926/41/2/022401 13

Z Wang et al.: Accelerating hybrid and compact neural networks targeting perception

http://dx.doi.org/10.1038/nature14236
http://dx.doi.org/10.1038/nature16961
http://dx.doi.org/10.1038/nature16961
http://dx.doi.org/10.1038/nature24270
http://dx.doi.org/10.1049/cp:19991218
http://dx.doi.org/10.1049/cp:19991218
https://opalkelly.com/products/frontpanel
https://opalkelly.com/products/frontpanel
https://opalkelly.com/products/frontpanel
http://www.mitchellspryn.com/2017/10/28/Solving-A-Maze-With-Q-Learning.html
http://www.mitchellspryn.com/2017/10/28/Solving-A-Maze-With-Q-Learning.html
http://www.mitchellspryn.com/2017/10/28/Solving-A-Maze-With-Q-Learning.html
http://dx.doi.org/10.1038/nature14236
http://dx.doi.org/10.1038/nature16961
http://dx.doi.org/10.1038/nature16961
http://dx.doi.org/10.1038/nature24270
http://dx.doi.org/10.1049/cp:19991218
http://dx.doi.org/10.1049/cp:19991218
https://opalkelly.com/products/frontpanel
https://opalkelly.com/products/frontpanel
https://opalkelly.com/products/frontpanel
http://www.mitchellspryn.com/2017/10/28/Solving-A-Maze-With-Q-Learning.html
http://www.mitchellspryn.com/2017/10/28/Solving-A-Maze-With-Q-Learning.html
http://www.mitchellspryn.com/2017/10/28/Solving-A-Maze-With-Q-Learning.html
http://dx.doi.org/10.1038/nature14236
http://dx.doi.org/10.1038/nature16961
http://dx.doi.org/10.1038/nature16961
http://dx.doi.org/10.1038/nature24270
http://dx.doi.org/10.1049/cp:19991218
http://dx.doi.org/10.1049/cp:19991218
https://opalkelly.com/products/frontpanel
https://opalkelly.com/products/frontpanel
https://opalkelly.com/products/frontpanel
http://www.mitchellspryn.com/2017/10/28/Solving-A-Maze-With-Q-Learning.html
http://www.mitchellspryn.com/2017/10/28/Solving-A-Maze-With-Q-Learning.html
http://www.mitchellspryn.com/2017/10/28/Solving-A-Maze-With-Q-Learning.html

