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Abstract: Driven by continuous scaling of nanoscale semiconductor technologies,  the past years have witnessed the progress-
ive  advancement  of  machine  learning  techniques  and  applications.  Recently,  dedicated  machine  learning  accelerators,  espe-
cially for neural networks, have attracted the research interests of computer architects and VLSI designers. State-of-the-art accel-
erators increase performance by deploying a huge amount of processing elements, however still face the issue of degraded re-
source utilization across hybrid and non-standard algorithmic kernels. In this work, we exploit the properties of important neur-
al network kernels for both perception and control to propose a reconfigurable dataflow processor,  which adjusts the patterns
of data flowing, functionalities of processing elements and on-chip storages according to network kernels.  In contrast to state-
of-the-art fine-grained data flowing techniques, the proposed coarse-grained dataflow reconfiguration approach enables extens-
ive  sharing  of  computing  and  storage  resources.  Three  hybrid  networks  for  MobileNet,  deep  reinforcement  learning  and  se-
quence  classification  are  constructed  and  analyzed  with  customized  instruction  sets  and  toolchain.  A  test  chip  has  been  de-
signed  and  fabricated  under  UMC  65  nm  CMOS  technology,  with  the  measured  power  consumption  of  7.51  mW  under
100 MHz frequency on a die size of 1.8 × 1.8 mm2.
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1.  Introduction

Recent  advancements  in  neural  networks  have  demon-
strated  their  success  in  a  wide  range  of  application  domains,
such  as  computer  vision,  natural  language  processing,  and
gaming  engines.  Although  questions  still  exist  on  the  appli-
ance of neural networks into further domains, there is inargu-
ably the increasing demand on the computing power to sup-
port fast-evolving network structures.

Traditionally,  neural  networks  are  mostly  deployed  on
CPU and GPU-based platforms, resulting in either less comput-
ing  performance  or  huge  power  consumption.  Recently,  the
CPU-FPGA based heterogeneous programming paradigm has
also appeared to support higher performance. However, both
solutions  suffer  from  extensive  power  consumption  caused
by a significant amount of data movement between comput-
ing elements. Dedicated hardware accelerators have been pro-
posed  to  accelerate  the  inference  phase  of  neural  networks
such as Eyeriss[1], Google TPU-I[2] and DaDianNao[3]. Such high-
lighted  architectures  achieve  high  performance  and  resource
utilization  with  specific  algorithmic-architecture  co-design

techniques,  such  as  row-stationary  dataflow  and  systolic  ar-
ray  matrix  multipliers.  The  majority  of  hardware  optimization
techniques are proposed for the standard convolution kernel,
which  accounts  for  90%  computing  operations  of  the  state-
of-the-art neural networks[4]. Accelerator supporting both con-
volutional  and  recurrent  algorithmic  kernels  has  been  pro-
posed  in  Ref.  [5]  with  optimization  techniques  on  bit-width
and pattern access, which opens the research direction on ar-
chitecture for advanced hybrid neural networks.

Standard  convolution  plays  a  key  role  in  feature  extrac-
tion,  its  amount  of  computation  and  network  parameters
have  been  increasing  rapidly[6],  which  poses  severe  chal-
lenges  in  deploying  standard  CNNs  on  embedded  and  mo-
bile  devices.  To  address  this,  recently  compact  CNNs  such  as
SqueezeNet[7] and MobileNet[8] have been designed to drastic-
ally  reduce  the  total  amount  of  computation  while  maintain-
ing similar accuracy compared to standard CNN models. For in-
stance,  MobileNet  reduces  27  ×  in  computation  and  32  ×  in
parameter  size  but  only  degrades  1%  in  accuracy  compared
to  VGG-16[9].  Conventional  optimization  techniques  in  neural
accelerators are less generalizable to compact kernels.  For in-
stance, Winograd[10] and FFT-based[11] transformations are effi-
cient  for  3-D filters  but  ineligible  for  pointwise (PW) convolu-
tion. Additionally, depthwise (DW) convolution has a low com-
putation to communication (CTC) ratio[12], which makes it diffi-

  
Correspondence to: Z Wang, zheng.wang@siat.ac.cn
Received 8 OCTOBER 2019; Revised 16 DECEMBER 2019.

©2020 Chinese Institute of Electronics

ARTICLES

Journal of Semiconductors
(2020) 41, 022401

doi: 10.1088/1674-4926/41/2/022401

 

 
 

http://dx.doi.org/10.1088/1674-4926/41/2/022401


cult to be executed as efficient as standard convolution.
On  the  other  hand,  the  AI  community  has  also  wit-

nessed  the  applications  of  neural  networks  in  non-perceptu-
al  domains  such  as  decision-making.  In  the  domain  of  con-
trol  systems,  decision  making  through  deep  reinforcement
learning has shown progressive achievements. The deep Q net-
work  (DQN),  which  was  originally  proposed  in  Ref.  [13],  uses
multi-layer neural networks to implement the Q-function in or-
der  to  eliminate  the  lookup-table  for  storing Q-values.  Deep-
mind  demonstrates  a  ground-breaking  contribution  in  Ref.
[14]  by  combining  CNN  and  DQN  to  realize  beyond  human-
level  performance  in  Atari  gaming.  AlphaGo[15] and  Zero[16]

are  designed  with  deep  reinforcement  learning  kernels  as
well. Despite its increasing importance, current hardware accel-
erators have very few supports for control-related kernels.

Consequently, there is a high probability that future neur-
al networks are capable of performing end-to-end tasks in per-
ception, control,  and even actuation with hybrid,  compact al-
gorithmic  kernels.  However,  current  dataflow  techniques
such  as  weight-stationary  (WS),  output-stationary  (OS)  and
row-stationary  (RS)[17] only  targets  for  fine-grained  data  re-
use of  standard convolution.  To achieve both functional  sup-
port  and  high  resource  utilization,  accelerator  designers
should analyze characteristics of various kernels,  such as data
flow  and  access  patterns,  functionalities  of  computing  re-
sources, while minimizes the control and synchronization over-
heads among thousands of  processing elements (PEs).  In  this
work, we propose a reconfigurable dataflow processor, which
adjusts  the  patterns  of  data  flowing,  functionalities  of  pro-
cessing elements  and on-chip  storages  according to  network
kernels,  including  standard  and  compact  convolution,  pool-
ing,  full  connection,  shortcut,  long  short-term  memory
(LSTM)[18] and state-action layer in DQN. The proposed architec-
ture  increases  resource  utilization  across  multiple  kernels
through  coarse-grained  management  of  dataflow,  which  is
complementary  to  other  fine-grained  techniques.  A  dedic-
ated  instruction  set  and  toolchain  have  been  built  to  man-
age  dynamic  reconfiguration  and  achieve  compatibility
with  mainstream  AI  programming  environments.  A  recon-
figurable  ASIC  has  been  designed  and  fabricated  under
65  nm  CMOS  technology,  with  a  measured  power  consump-

tion of 7.51 mW under 100 MHz frequency on a 1.8 × 1.8 mm2

die size.

2.  Data flow for neural network kernels

2.1.  Standard kernels

Fig.  1 visualizes important network layers and their  inter-
connections,  which  form  an  end-to-end  network  targeting
both  perception  and  control.  Especially  for  graphical  input,
concatenated  convolution  and  pooling  layers  are  applied  as
perceptional  building  blocks  for  extracting  visual  features.
Model networks such as Yolo-v3 and Resnet-50 can have tens
of  such layers,  imitating the human visual  system.  For  timing
sequence-dependent  applications,  such  as  video  context  un-
derstanding  and  language  processing,  sequences  of  extrac-
ted features  through time are  provided as  input  to  the  LSTM
layer,  which  extracts  sequence-dependent  features.  Opposed
to former layers, LSTM constitutes four basic gates, naming in-
put  (I),  output  (O),  cell  state  (C)  and  forget  (F)  gates.  While  I,
O  and  F  gates  compute  layer  output  through  vector  opera-
tions,  C  gate  keeps  the  current  layer  states  which  are  also
provided as recurrent input for the next sequence in time.

The control  network  starts  after  feature  extraction layers.
In DQN, the extracted features are treated as nodes of  states,
while  the  optimal  decision  needs  to  be  chosen  through
nodes  of  actions.  The  approach  is  to  iterate  through  all  pos-
sible  actions  under  current  states  and  perform  regression  to
find  maximal  or  minimal  output  value  (Q value)  depending
on strategies of reinforcement learning. The procedure is rep-
resented  as  a  state-action  layer  in Fig.  1.  Since  action  nodes
need  to  be  iterated,  all  computation  in  the  following  layers
needs  to  be  iterated  as  well,  represented  as  yellow  dash
boxes.  The fully  connected layer  is  prevalent  since the inven-
tion  of  the  multi-layer  perceptron.  However,  shortcut  links
are often used, especially in residue networks, to improve the
accuracy  of  classification  and  regression  by  providing  fea-
tures form layers before the current input.

Various  layers  differ  not  only  in  the  network  structures,
but  also  operands,  operators,  nonlinear  functions. Table  1
summarizes the characteristics of multiple kernel layers. It is ob-
served that pooling and shortcut operate on vectors while oth-
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Fig. 1. (Color online) Structure of hybrid neural network targeting perception and control with layer-wise algorithmic kernels.
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er  kernels  operate  on  matrix,  among  which  convolution  pro-
cesses  sparse  matrix  and  the  rest  kernels  process  dense  mat-
rix.  Concerning  nonlinear  functions,  LSTM  adopts  simultan-
eously sigmoid and tangent while the rest  matrix  kernel  uses
either ReLU or sigmoid.

The  dataflow  properties  are  generalized  from  network
structure.  In  convolution  and  fully  connected  layers,  activa-
tions  (network  data)  need  to  be  shared  among  nodes  of  the
output  feature  map.  LSTM  adopts  similar  serial  streaming
with  the  special  case  that  activation  streams  need  to  be
shared  among  multiple  gates.  The  state-action  layer,  on  the
other hand, requires fast data flow generation based on the it-
eration  of  action  nodes.  Pooling  and  shortcut  which  operate
on  vectors  do  not  need  to  share  activation  for  feature  maps.
Therefore  vector  types  of  activation  can  be  streamed  in
parallel.

Furthermore, we analyze the functionality of the intermedi-
ate  data  used  in  multiple  kernels.  Due  to  the  nature  of  data
sparsity,  convolution  and  pooling  are  dominant  by  activa-
tions,  while  on  the  contrary,  FC  and  LSTM  are  dominant  by
weights.  LSTM  and  State-action  contain  generated  data  for
cell states and actions, respectively. In the shortcut layer, point-
ers  to  activations  of  the  previous  layer  need  to  be  bookkept,
for the network to address previous data.

2.2.  Compact convolutions

The  essences  of  compact  CNNs  are  depthwise  (DW)  and
pointwise (PW) convolution.  As shown in Fig.  2,  DW convolu-
tion  utilizes  a  unique  2-D  filter  to  convolve  data  within  a
single input channel.  PW convolution,  on the other hand, ap-
plies  a  1-D  filter  to  perform  linear  combination  across  mul-
tiple  channels.  We  label  the  dimension  of  input  feature  map
(Ifmap)  by DF × DF × M where DF is  the  spatial  height  and
width, M is  the  number  of  input  channels.  The  output  fea-
ture map (Ofmap) after DW convolution has the dimension of
DF × DF × M,  which  is  passed  onto  PW  convolution  as  Ifmap.

The Ofmap of  PW convolution is DF × DF × N.  The number of
operations  compared  to  standard  convolution  is  present  in
Table  2,  which  is  evaluated  in  the  number  of  multiply-and-
accumulation  (MAC).  For  the  typical DK value  of  three,  repla-
cing  standard  convolution  with  DW  and  PW  convolution
leads to MAC reduction up to 90%[9].

Fig. 3 visualizes the MobileNet structure, which concaten-
ates several network layers. Besides standard convolution, pool-
ing,  FC  and  softmax  layers  that  are  available  in  conventional
CNN,  thirteen  repeated  blocks  of  DW  and  PW  convolution
play  a  crucial  role  in  network  organization.  As  shown  in  the
statistics chart,  94.85% of total operations in MobileNet is PW
convolution  while  DW  convolution  ranks  the  second  by
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Fig. 2. Orientation and dimensions of compact CNN filters.
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Table 1.   Operation characteristics among multiple standard neural network kernels.

NN Layer Convolution Pooling FC LSTM State-action Shortcut

Operands Sparse matrix Vector Dense matrix Dense matrix Dense matrix Vector
Operators Sum of product

(SoP)
Max, min, mean SoP SoP vector

multiply vector
sum

SoP Vector sum

Nonlinear functions ReLU sigmoid None ReLU sigmoid Sigmoid tangent ReLU sigmoid None
Dataflow property Serial in/out

thread-level
parallelism

Parallel in/out Serial in/out
thread-level
parallelism

Serial in/out
shared among
gates

Serial in/out
action nodes
iteration

Parallel
in/out

Buffering property Activation
dominant

Activation
dominant

Weight dominant Weight, states Weight,
states, actions

Activation
pointer

Table 2.   Number of operations of standard, DW and PW convolution
layers.

Layer Filter size Input size MAC amounts
Standard
conv

DK × DK ×M × N DF × DF ×M DK ⋅ DK ⋅M ⋅ N ⋅ DF ⋅ DF

Conv DW DK × DK ×M DF × DF ×M DK ⋅ DK ⋅M ⋅ DF ⋅ DF
Conv PW  ×  ×M × N DF × DF ×M M ⋅ N ⋅ DF ⋅ DF
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3.06%. Other compact CNNs follow similar  statistics  of  opera-
tions,  which  indicates  massive  demand  in  the  acceleration  of
PW and DW convolution.

3.  Reconfigurable dataflow processor

According  to  the  analysis  of  algorithmic  kernels  on  Sec-
tion  2,  a  dataflow  processor  is  designed  to  achieve  dynamic
functional  reconfiguration  through  coarse-grained  dataflow
management.  This  section  describes  the  design  methodo-
logy, micro-architecture, instruction set architecture, and asso-
ciated toolchain for model conversion from mainstream deep
learning frameworks.

3.1.  Methodology of dataflow reconfiguration

To  implement  standard  algorithmic  kernels  in Table  1
and possibly save hardware resources, the design of reconfigur-
able  architecture  should  at  least  cover  the  union  of  different
kernels.  To  achieve  this,  the  resources  are  maximally  shared
among  kernels,  including  PEs,  data  input/outputs,  buffering
SRAMs  and  DRAM  interfaces. Fig.  4 illustrates  the  methodo-
logy of data flow management and resource sharing, which is
also explained as the following:

Convolution: PEs, which are configured as MAC and ReLU
in  function,  are  grouped  in  multiple  threads,  where  each
thread  processes  data  with  the  same  row  and  column  across
multiple  channels  of  the  output  feature  map.  SRAMs  are
mostly  used  for  buffering  thread  dependent  activations  of
the  input  feature  map.  Weights  are  shared  across  multiple
threads.  Activations  are  serially  streamed  from  the  individual
buffer to achieve sharing among PEs. Serial outputs from indi-
vidual  threads  are  associated  in  the  output  buffer  and  str-
eamed out in parallel through SERDES and DRAM controller.

Pooling:  PEs  are  configured  as  a  comparator  to  achieve
max  and  min  operators.  Since  pooling  operates  on  vectors,
the  activations  fetched  from  DRAM  are  directly  provided  to
PE  arrays  without  buffering,  which  extensively  saves  dynam-
ic power consumption. Both parallel input and output are util-
ized.  Activations  are  compared  through  time  by  modifying
DRAM access addresses.

Full  connection:  for  such  weights  dominant  kernel,
SRAMs are  configured as  weight  buffers  while  activations are
serially  streamed  through  multiple  threads.  Outputs  and  PE
configurations are similar to convolution.

Shortcut:  Similar  to pooling,  the kernel  works  on vectors.
The  PEs  are  configured  as  an  addition.  Since  two  vectors  are
added, both input and output shift registers are used to store
operands,  which  results  are  written  to  the  output  shift  re-
gisters and written to DRAM in parallel. The pointer buffer is in-
stantiated to address both operands in DRAM.

LSTM: PEs are grouped into four sets of gates which each
set  instantiates  different  nonlinear  functions  between  sig-
moid  and  tangent.  Additional  vector  operators  and  tangent
modules  are  used  for  post-processing.  A  mixed-mode  input
style is adopted for both activation sharing within each set of
gates  and  fast  data  provision  among  different  sets.  Cell  state
buffer is instantiated to keep intermediate state information.

State-action: input/outputs and PE configurations are simil-
ar  to  full  connection.  Multiple  origins  of  activations  exist,  in-
cluding  DRAM  for  conventional  activations,  on-chip  buffer-
ing for activations of states and iterative actions.

Fig.  5 illustrates  the  proposed  flow  of  data  streaming  for

compact  convolutions.  Activations  are  associated  into
bundles.  Each bundle has the size of  a  single read transfer  of
DRAM memory, which is eight bytes here for instance. Activa-
tions in the bundle are executed in parallel  on multiple hard-
ware  threads.  For  PW  convolution,  bundle  groups  horizontal
data  elements.  Burst  read  mode  of  DRAM  streams  eight  in-
put threads of data bundles vertically and simultaneously com-
putes  eight  output  threads.  Showing  in Fig.  5,  with  only  four
streams  the  Ofmap  with  the  size  of  16  ×  16  is  ready  to  com-
mit.  On  the  contrary,  for  DW  convolution,  bundle  vertically
groups  eight  data  elements  and  streams  horizontally.  After
streaming  multiple  rows  of  Ifmap  depending  on  the  filter  di-
mension,  bundles  of  multiple  data  in  Ofmap  are  ready  to
commit.  The grouping and streaming directions are in  ortho-
gonal  to  the  filter  dimension,  which  maximally  exploits  com-
puting parallelism.

The alternating direction of  streaming and committing is
designed  to  cater  to  the  nature  of  alternating  PW  and  DW
layers  in  compact  CNN.  Therefore,  no  extra  logic  and  cycles
are  required  to  re-arrange  data  alignment,  which  achieves  a
high saving in execution time and hardware cost.

3.2.  Microarchitecture

The  microarchitecture  of  the  proposed  reconfigurable
dataflow  processor  is  illustrated  in Fig.  6.  It  employs  a  hiera-
rchical  design  methodology,  including  PE,  hardware  thread
and  system-on-chip.  This  subsection  introduces  the  individu-
al module and its design considerations.

System-on-chip: this abstraction performs system-level co-
ordination  of  individual  threads  and  PEs.  It  is  composed  of
four  subsystems:  execution  controller,  direct  memory  access
(DMA) controller, execution threads, and buffers.

The execution controller mainly coordinates PEs and buf-
fers  according  to  network  instructions.  Upon  initialization,  it
fetches  instructions  from  DRAM  into  configuration  SRAM,  se-
quentially  decodes  each  instruction  and  drives  execution
threads  to  achieve  targeting  network  functions.  A  central-
ized  control  methodology  is  adopted  to  reduce  logic  over-
heads and boost performance.

The  DMA  controller  achieves  multiple  modes  of  reads
and  writes  between  SoC  and  external  DRAM  storage.  It  flu-
ently  transmits  network  configurations,  weights,  activations,
and  results.  DDR  burst  mode  is  considerably  adopted  to  rap-
idly  provide  data  and  reduce  DRAM  access  power.  It  is  well-
known that memory bandwidth incurs limitation to the compu-
tational throughput. Hence, we design the DMA according to
the algorithmic properties, specified in Section 3. For instance-
,  the data bundle for  PW and DW convolution has the size of
elements equaling to the number of bytes per transfer under
a  specific  DRAM  protocol.  Therefore  continuously  burst  read
and write are possible without further data buffering.

A  pool  of  SRAM  buffers  is  designed  where  each  SRAM
has  8  KB  size.  The  analysis  in  Section  3  inspires  the  SRAM
pool structure, where different algorithmic kernels have diver-
gent usage of  buffering.  With the assistance of  the execution
controller, the SRAM is instantiated into various buffering func-
tions  on  the  fly,  determined  by  algorithmic  kernels.  For  de-
tailed usage of the SRAM pool, please refer to buffering proper-
ties in Table 1.

Hardware  threads:  this  design  abstraction  is  introduced
for  easy  management  of  resource  sharing  for  both  data  flow
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and  weights.  Activation  inputs  and  outputs  are  built  using
shift  registers  to  achieve  both  data  sharing  and  fewer  power
overheads  due  to  single  fan-out  and  reduced  load  capacit-
ances.  Shift  registers  can  be  dynamically  configured  as  serial
and  parallel  modes  according  to Fig.  4.  In  contrast  to  the

single  direction  of  the  in-data  stream,  the  out-data  stream  is
bidirectional  to  facilitate  vector  computation  used  in  short-
cut  kernel.  Multiple  PEs  are coordinated through thread-level
finite state machine (FSM) to process activations and weights
in  a  pipeline  fashion.  The  weights  are  streamed-in  from  the
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Fig. 4. (Color online) Reconfiguration of dataflow, PE and storage functionalities for standard kernels.
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Fig. 5. (Color online) Reconfiguration of dataflow for pointwise (PW) and depthwise (DW) convolution kernels.
 

To host

PCl-e MC & PHY

T
h

re
a

d

C
o

n
fi

g
s

W
e

ig
h

ts
A

ct
iv

a
ti

o
n

R
e

su
lt

s

T
h

re
a

d

T
h

re
a

d

T
h

re
a

d

T
h

re
a

d

T
h

re
a

d

T
h

re
a

d

T
h

re
a

d

T
h

re
a

d

T
h

re
a

d

T
h

re
a

d

T
h

re
a

d

Th
re

ad

B
u

ff
e

ri
n

g
 F

S
M

D
M

A
 c

o
n

tr
o

l

Th
re

ad
Th

re
ad

T
h

re
a

d

SoC

FSM

Core FSM

Synchronized weights

In
-d

a
ta

 s
tr

e
a

m

O
u

t-
d

a
ta

 s
tr

e
a

m

D
a

ta
_

in
1

D
a

ta
_

in
2

D
a

ta
_

o
u

t

T
h

re
a

d

PE

PE

PE

PE

ReLU

Ctrl_in

Weight_in

CTRL

REG

Processing element (PE)

Sigmoid

Tanh

Bypass

PE

PE

PE

PE

CFG

SRAM

DDR

DRAM

Off chipParallel wavefront

Serial wavefront

S R A M

S R A M

S R A M

S R A M

System-on-chip

Activate

De-

coder

DDR
MC
&

PHY

Done

 

Fig. 6. (Color online) Microarchitecture of proposed reconfigurable dataflow processor.
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SRAM pool in the SoC, where individual PEs can receive differ-
ent weight streams.

Processing  elements:  To  efficiently  compute  kernel-de-
pendent  functions,  PE  is  compactly  designed  to  achieve  re-
quired operators.  It  facilitates both matrix and vector compu-
tation  through  both  data  input  ports  and  one  weight  input
port.  The  Sigmoid  and  Tangent  modules  are  designed  based
on  the  linear  approximation  technique  in  Ref.  [19].  The  con-
trol  input  receives  opcode  from  thread-level  FSM  to  config-
ure multiplexers to realize kernel-dependent operators.

3.3.  Instruction set and toolchain

Customized instruction  set  architecture  for  the  proposed
processor  is  designed,  supporting  neural  network  al-
gorithmic  kernels  in  Section  3.  As  shown  in Fig.  7,  instruc-
tions  have  a  length  of  96  bits  and  contain  divergent  fields
across  instruction  types.  In  general,  the  proposed  ISA  spe-
cifies  the  operator  (opcode  in  first  five  bits),  properties  of  in-
put  and  output  operands,  quantization  bit  for  activation  and
weight  addressing  index  from  DRAM.  Address  for  activation
is  not  necessary  for  the  majority  of  layers  since the following
layer reads activations from the previous layer by default.

For  convolution  and  pooling,  dimension  descriptions  on

Ifmap,  Ofmap,  and  filters  are  specified,  as  well  as  stride  and
padding  properties.  Convolution  modes  of  standard,  PW  and
DW  are  automatically  decoded  in  micro-architecture  accord-
ing to filter dimensions.  Pooling instruction contains the stra-
tegy field for choosing between max, min,  and average pool-
ing.

The  nonlinear  function  layer  can  be  specified  among
ReLU, sigmoid, tangent, and bypass. The state-action layer con-
tains an extra field for size of action nodes, strategy selection,
plus the probability of  random action taking (epsilon greedy)
and  associated  random  number  seed.  The  details  of  DQN
architecture and controlling strategy is referred to Ref. [20].

The  shortcut  layer  operates  on  two  vector  operands;
hence,  their  activation addressing (pointer)  and sizes need to
be  specified  in  the  instructions.  LSTM  layer  contains  fields  of
sequence-dependent  cell  state  nodes  besides  regular  input
nodes.

The design methodology of the proposed architecture fa-
vors an ASIC design manner instead of a CPU centric one. Typ-
ically  ASIC  adopts  a  finite  state  machine  for  control  flow  in-
stead of  RISC-style  instructions  in  the  CPU.  The instruction or
configuration in ASIC tends to guide the state transition from
higher  abstraction,  to  realize  the  design  of  multi-mode  func-
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Fig. 7. (Color online) Instruction set architecture (ISA) and developing toolchain.
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tional  circuits.  Consequently,  the  customized  layer-wise  ins-
tructions  facilitate  data  stream  reconfiguration  according  to
Figs.  4 and 5.  Compared  to  traditional  RISC  style  ISA,  such
high-level  ISA  constructs  the  abstraction  layer  which  leaves
fine-grained operation management to the controller state ma-
chine in the processor and significantly simplifies the compila-
tion flow of neural networks.

The developing tool flow converts the state-of-the-art net-
work  model  to  deployable  format  on  proposed  architecture.
Taking  Keras  network  h5  model[21] for  instance,  two  separate
branches  of  toolchains  generate  network  instructions  and
weights by converting corresponding members. For unconvert-
ible  instruction  such  as  a  state-action  layer,  a  graphical  inter-
face has been designed for manual input of network specifica-
tions.  For  weights  conversion,  the  proposed  architecture  ad-
opts channel last data alignment for both weights and activa-
tion to  improve performance[22] and approach in  Ref.  [23]  for
statistical  quantization  of  layer-wise  activations.  The  reason
for  the  separate  flow  of  weight  preparation  is  to  modify  the
standard weight format for maximal usage of DRAM burst ac-
cess  mode  in  order  to  reduce  memory  access  power  and
latency. After the format transformation of weights, the archi-
tecture exploits simple burst-based streaming instead of soph-
isticated data flow management.

3.4.  Operation management

The internal  finite state machine contains more than 100
states for activation/weight buffering, synchronization of mul-
tiple  threads  and  processing  with  high  utilization  of  PEs.  For
brevity,  the  FSM  is  not  explicitly  described  in  this  section.  In-
stead,  phases  of  operations  are  summarized  below  and  also
presented in Fig. 8.

Initialization  phases:  Such  phases  load  network  instruc-
tions,  weights  and input activation from the host  machine to
DRAM  of  the  processor  with  specific  locations  for  all  three
types  of  data.  The  interface  with  the  host  can  be  one  of  the
SERDES such as PCI-e.  Afterwards,  the instructions are loaded
from  DRAM  to  CFG  buffer  in  the  SoC.  Currently  an  8  kB  size
of CFG buffer is deployed to hold a maximum of 682 layer net-
work  instructions,  which  is  sufficient  for  mainstream  artificial
neural networks.

Computation  phases:  The  SoC  controller  fetches,  de-
codes  each  network  instruction  and  reconfigures  the  data-
flow  according  to Figs.  4 and 5.  The  duration  of  reconfigura-
tion takes only eight clock cycles including fetch and decode.
Subsequently, weights for corresponding network layer and in-
put  activations  are  streamed into individual  threads  and pro-
cessed  by  PEs.  Weights  and  activations  are  streamed  with  an
interleaved  manner  to  maximally  exploit  the  length  of  burst
access of DRAM. Once upon completion of the network layer,
the  controller  iterates  onto  the  next  layer  and  continues  re-
configuration  and  data  streaming.  Intermediate  results  are

streamed to and from DRAM without external manipulation.
Output  phases:  When the last  network  layer  is  complete,

the  controller  streams  multiple  batches  of  results  to  DRAM.
Once  all  results  are  available,  they  are  streamed  from  DRAM
to  host  through  SERDES.  The  next  batch  of  input  activations
is  ready  to  be  streamed-in  after  the  output  of  the  current
result.

4.  Experiments

4.1.  Design methodology

The  demonstrated  architecture  with  108  kB  on-chip
SRAMs and 16 PEs fitting in one single thread is designed com-
pletely in Verilog and simulated using Modelsim to character-
ize performance on individual network kernels. Logic synthes-
is by Design Compiler is carried out under UMC CMOS 65 nm
low-leakage technology library. Placement and routing are per-
formed  by  Innovus  to  generate  layout.  Calibre  is  for  physical
verification  and  sign-off.  The  prototype  chip  has  been  fabric-
ated  by  UMC  through  a  multi-project  wafer  (MPW)  service
provided by Europractice.

Currently,  IPs  for  DRAM  and  PCI-e  interfaces  are  missing
in  the  taped-out  chip.  To  verify  the  designed  DMA  controller
and  DRAM  data  access,  simulation  models  of  512  MB  DDR3
DRAM,  memory  controller  and  PHY  (MIG)  are  generated  us-
ing  Xilinx  ISE  with  a  DQ  width  of  16  bits  and  DDR  frequency
of  800  MHz.  Opal  Kelly  Frontpanel  technology[24] is  used  to
replace  the  PCI-e  IP  for  interfacing  with  the  host  machine
through FPGA.

The  exemplary  design  on  FPGA  contains  256  PEs  fitting
in 16 hardware thread, 18 × 6 kB on-chip SRAM buffers, includ-
ing  16  reconfigurable  SRAM  blocks,  one  configuration  SRAM
and  one  special  purpose  SRAM.  The  dimensions  of  PEs  and
SRAMs  are  chosen  to  match  the  data  width  provided  by  the
DRAM for better utilization of off-chip memory bandwidth.

Toolchains for network model conversion is developed in
Python.  Currently,  the  Tensorflow  Keras  h5  model  is  suppor-
ted,  while  integration  with  Caffee  and  Darknet  frameworks
are under development. After DRAM calibration, converted net-
work  configuration,  inputs,  and  weights  are  downloaded  in-
to  specific  address  spaces  in  DRAM  through  Frontpanel  and
DMA controller in the SoC. Upon completion of model down-
loading, the SoC begins layer-wise processing according to re-
configurable dataflow described in Section 3. Benchmarks are
chosen  from  Keras  framework  in  Python  and  neural  network
toolboxes in MATLAB.

4.2.  Performance analysis

Three  network  structures  have  been  demonstrated  to
analyze  the  performance  of  the  proposed  architecture:  First,
MobileNet with hybrid kernels of standard, PW and DW convo-
lutions,  pooling  and  full  connection.  Second,  maze  walk-
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Fig. 8. (Color online) Operational phases of proposed architecture.
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through  by  DQN  with  state-action  and  full  connection  ker-
nels.  Third,  sequence  classification  with  hybrid  kernels  of
LSTM and full connection.

MobileNet:  As  introduced  in  Section  2.2,  MobileNet  ad-
opts  iteratively  compact  convolution  kernels,  which  account
for  97.91%  of  computation  in  the  number  of  MACs. Table  3
shows  the  profiled  execution  latency  of  proposed  design
throughout  various  layers  of  MobileNet,  benchmarked  bet-
ween multi-  and single-threaded architecture,  using an FPGA
prototype with 256 PEs and DRAM support.

The  total  network  latency  with  multi-threading  is  only
7.6%  of  the  single-threaded  design  proposed  in  Ref.  [22]  un-
der  the  same  frequency  of  100  MHz.  Such  acceleration  is
mainly due to the following factors. In DW convolution, maxim-
al  utilization  of  DRAM  bandwidth  and  processing  elements
do not reach a high level. However, the 2-D filters across mul-
tiple channels are fetched from DRAM in a burst  manner and

computed  with  data  elements  of  a  bundle  in  parallel,  which
consequently  leads  to  a  21.9×  saving  of  latency.  On  the  oth-
er hand, PW convolution achieves a 16× speed-up due to max-
imal  100%  usage  of  memory  bandwidth  and  PEs,  which  is
only  possible  with  the  assist  of  continuously  addressed  data
bundles in burst mode.

Besides compact convolution layers, the first layer of stand-
ard convolution is  processed only in the single thread due to
the  irregular  addressing  for  three  channel  RBG  feature  maps,
which  incurs  only  6.7%  of  PE  utilization.  Ongoing  work  is
targeting the issue of irregular addressing with multi-function-
al  on-chip SRAMs.  The pooling layer  is  executed with parallel
input  and  output  stream  on  a  single  thread  as  shown  in
Fig.  4(b).  A  fully  connected  kernel  utilizes  16  PEs  similar  to  a
single-thread  design.  The  parallelism  is  limited  by  the  fact
that  the  weight  stream  for  individual  output  node  in  the  FC
layer  cannot  be  shared  among  PEs  and  noted  that  the  pro-
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Fig. 9. (Color online) Comparison of Q iteration time between proposed architecture and host machine (CPU)[27].

Table 3.   Benchmark of performance for MobileNet with proposed architecture[25].

Layer type Input size #. MACs
Multi-threaded streaming architecture @ 100 MHz

Single-threaded
latency (ms)[24]Max BW

utilization
Max PE
utilization #. stream ns / stream Latency (ms)

Conv0 Std. 224 × 224 × 3 10.84M 3% 6.70% 25088 3340 83.8 83.8
Conv1 DW 112 × 112 × 32 3.61M 10% 6.70% 25088 2080 17.4 380.5

Conv1 PW 112 × 112 × 32 25.69M 100% 100.00% 3136 1835 5.8 92.1

Conv2 DW 112 × 112 × 64 1.81M 10% 6.70% 12544 2080 8.7 190.2

Conv2 PW 56 × 56 × 64 25.69M 100% 100.00% 1568 3520 5.5 88.3

Conv3 DW 56 × 56 × 128 3.61M 10% 6.70% 25088 2080 17.4 380.5

Conv3 PW 56 × 56 × 128 51.38M 100% 100.00% 1568 6890 10.8 172.9

Conv4 DW 56 × 56 × 128 0.90M 10% 6.70% 6272 2080 4.3 95.1

Conv4 PW 28 × 28 × 128 25.69M 100% 100.00% 784 6890 5.4 86.4

Conv5 DW 28 × 28 × 256 1.81M 10% 6.70% 12544 2080 8.7 190.2

Conv5 PW 28 × 28 × 256 51.38M 100% 100.00% 784 13630 10.7 171

Conv6 DW 28 × 28 × 256 0.45M 10% 6.70% 3136 2080 2.2 47.6

Conv6 PW 14 × 14 × 256 25.69M 100% 100.00% 416 13630 5.7 90.7

Conv7-11DW 14 × 14 × 512 0.90M 10% 6.70% 6272 2080 4.3 95.1

Conv7-11PW 14 × 14 × 512 51.38M 100% 100.00% 416 27110 11.3 180.4

Conv12 DW 14 × 14 × 512 0.23M 10% 6.70% 1568 2080 1.1 23.8

Conv12 PW 7 × 7 × 512 25.69M 100% 100.00% 256 27110 6.9 111

Conv13 DW 7 × 7 × 1024 0.45M 10% 6.70% 3136 2080 2.2 47.6

Conv13 PW 7 × 7 × 1024 51.38M 100% 100.00% 256 54070 13.8 221.5

Avg Pool 7 × 7 × 1024 0.05M 10% 6.70% 64 1767 0.1 0.1

FC 1 × 1 × 1024 1.02M 55% 6.70% 63 90218 5.7 5.7

Total — 569M — — — — 294.3 3856.5
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cessing  latency  considers  not  only  streaming  of  activation
but  also  weights,  which  accounts  for  ~60% of  latency  for  full
connection.

Deep  reinforcement  learning:  a  typical  usage  of  DQN  is
maze  walking,  where  the  intelligent  agent  learns  to  walk  to-
wards the destination by picking right directions at the cross-
road and also avoiding barriers.  To model maze walking with
the state-action layer  in  DQN,  the actions for  the agent  upon
choices  are  modeled  as  discrete  action  nodes,  where  states
are modeled with whether the agent's faces surrounded barri-
ers in different directions. For details on modeling maze walk-
ing with DQN, the readers are referred to Ref. [26].

After  modeling,  we  tune  the  sizes  of  state  and  action
space and compare the computation time consumed by differ-
ent structures of the DQN network and the dimensions of the
action space. As shown in Fig. 9, one, two, four and six nodes
of action space are tested on the 2-, 5-, and 10-layer network,
while  state  space  is  chosen  between  128  and  256  nodes.  For
all  tested  action  space,  the  on-chip Q iterative  time  of  all
three network structures is less than 2 ms. Such iteration time
slightly  increases  with  the  dimension  of  action  space  as  well
as the network size.

We  profile  the Q iteration  time  for  the  same  configura-
tion  of  network  and  action  space  on  the  host  machine  with
the  Intel  i7  processor.  MATLAB  with  Neural  Network  Toolbox
with  the  feature  of  runtime  profiling  is  used  for  benchmark-
ing.  As  shown  in Fig.  5,  the  proposed  architecture  with  on-
chip Q iteration  achieves  at  least  100  ×  speed-up  compared
to the host machine for all  configurations, demonstrating the
advantage of the proposed architecture for decision network.

Sequence  classification:  the  testing  example  employs
sensor data obtained from smartphone worn on the body[30].
The  data  is  trained  with  an  LSTM  network  to  recognize  the
activity of the wearer given time series representing accelero-
meter readings in three different directions. The network com-
bines  the  LSTM  layer  and  full  connection  layer,  followed  by
the  Softmax  layer  for  classification,  where  the  first  two  layers
are used for performance analysis.

Table 4 presents the testing network with layer-wise struc-
ture  specifications.  Performance  is  benchmarked  on  the
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Fig. 10. (Color online) (a) ASIC layout with 16 reconfigurable PEs. Logics (middle) surrounded by 18 SRAM blocks. (b) Micrograph of taped-out
chip with UMC CMOS 65 nm low-leakage technology.
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Fig. 11. (Color online) Views of the testing board. The front view con-
tains testing IC under CLCC84 packaging and socket. The rear view con-
tains FPGA for interfacing IC with the host machine.

Table 4.   Benchmark of performance for LSTM networks among three processing architectures.

Network layer specification
1st LSTM layer 2nd LSTM layer (if need) 1st FC layer (if need) 2nd FC layer

In nodes: 3, Out nodes:
12, Recurrent nodes: 48

In nodes: 12, Out nodes:
12, Recurrent nodes: 48 In nodes: 12, Out nodes: 12 In nodes: 12, Out nodes: 5

Network
Performance (ms/sample) Average power

consumption1 LSTM + 1 FC 2 LSTM + 1 FC 2 LSTM + 2 FC
CPU Intel i7-8700 @3.20 GHz 11.981 22.362 23.962 60–70 W
CPU Intel i7 w. GPU NVIDIA
GTX 1050

2.87 4.94 5.74 50–70 W

Proposed design with 16
PEs @ 100 MHz *

1.033 1.157 1.957 30–50 mW

* Simulation result, not account for data transferring between disk storage and DRAM.
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following  three  platforms:  Intel  i7  CPU  and  NVIDIA  GTX  GPU
with  measured  latency  in  MATLAB  neural  network  toolbox
and proposed design of 16 PEs with simulated latency in Mod-
elsim. It is observed that for all network specifications, the pro-
posed  design  achieves  improved  performance  compared  to
CPU  and  GPU.  It  is  noticed  that  the  measurement  results
from MATLAB consider huge latency of data transfer between
disk,  main  memory,  and  operating  system,  whereas  our
design  is  proposed  as  a  standalone  system.  However,  future
LSTM  networks  tend  to  be  deployed  on  sensors  and  process
data  directly  from  DRAM,  which  is  close  to  the  design  prin-
ciple  of  our  design.  CPU  and  GPU  consume  three  orders  of
magnitudes  higher  power  than  the  proposed  design,  prov-
ing the energy efficiency of ASIC for hybrid neural networks.

4.3.  Physical results

The  reconfigurable  ASIC  has  been  taped-out  with  UMC
CMOS  65  nm  low-leakage  technology. Fig.  10 presents  the
chip’s  layout  and  micrograph.  The  ASIC  has  a  die  size  of
1.8  ×  1.8  mm2 including  80  IO  pads,  16  PEs,  and  18  SRAM
blocks. The driving voltage for the core and IO is 1.2 and 2.5 V
respectively.  The  chip  communicates  with  testing  FPGA
board using customized 8-bit input and output data ports.

Regarding  the  layout,  SRAM  IPs  with  6  kB  each  occupy
~50% of  the core’s  die area.  The size of  SRAM IP is  chosen to
fit  the  number  of  weights  per  channel  of  typical  convolution
Ofmap  (Up  to  3  ×  3  ×  512  filter  dimension).  Orientations  of

SRAMs are carefully adjusted so that controlling logic and PEs
can be placed in the middle area,  with reduced routing over-
head.  The  current  ASIC  only  contains  16  PEs.  However,  the
vast  die  area  with  fillers  (blue)  suggests  that  a  huge  amount
of  extra  PEs  can  be  placed  on  the  die,  which  should  effi-
ciently  share  the  pool  of  SRAMs  with  the  design  methodolo-
gies  introduced  in  Section  3.  Estimates  through  Innovus  im-
ply an average power consumption of 55.4 mW on the die of
256 PEs and the same 18 SRAMs, which boosts the energy effi-
ciency to 0.92 TOPs/W with further improvement possibilities.

From a functional perspective, the ASIC supports reconfig-
uration  between  standard  convolution,  max/min  pooling,
and full connection. Layer-wise kernel type, activation and fil-
ter dimension, nonlinear functions can also be reconfigured us-
ing ISA in Section 3.3.

As  shown  in Fig.  11,  the  testing  board  has  been  de-
signed  to  integrate  the  socket  of  the  CLCC84  chip  package
and FPGA interfacing with a host machine from Ref.  [24].  The
testing  infrastructure  is  demonstrated  in Fig.  12,  where  Py-
thon  APIs  are  used  to  transmit/receive  signals,  and  oscillo-
scopes  are  equipped  for  measuring  signal  voltages  and  core
currents.

Regarding runtime power  consumption,  we measure  the
core  current  by  deploying  five  layer  neural  networks,  as
shown in Fig.  13.  It  is  observed that  two convolutional  layers
incur  long  execution  time  and  large  current.  Pooling  layers
have  a  relatively  shorter  time  and  smaller  current,  while  the
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Fig. 12. (Color online) Testing infrastructure with measurement of both signal voltages and currents.
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Fig. 13. (Color online) Runtime current measurement across different phases of operation under 30 MHz frequency.
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FC  layer  has  high  power  but  a  very  short  running  time.  Both
initialization  and  idle  phases  consume  similar  currents.
Table  5 shows  the  statistics  of  average  power  consumption
for  each  operating  phase  under  different  running  frequen-
cies.  At  the  design  frequency  of  100  MHz,  the  largest  power
value  8.97  mW  is  consumed  by  the  FC  layer,  while  the  aver-
age  power  throughout  operating  phases  of  neural  networks
(form Conv1 to FC) is 7.51 mW, which implies the energy effi-
ciency of 426 GOPs/W.

Table  6 shows a  comparison between our  work  and oth-
er  state-of-the-art  works.  Our  taped-out  IC  with  16  PEs
achieves  the  minimal  measured  power  7.51  mW  among  oth-
er designs, which is highly customized to ultra-low power ap-
plications.  In  contrast,  the  multi-threaded  version  with 256
PEs  has  the  estimated  energy  efficiency  of  0.92  TOPS/W,
which is comparable to the state-of-the-art designs.

5.  Conclusion

Neural  networks  have  demonstrated  tremendous  suc-
cess in a  wide range of  application domains,  which drives re-
search on specific AI accelerators in the past five years. Major-
ity  of  customized  AI  accelerators  targets  convolutional  neur-
al  network,  while  hybrid  networks  with  non-standard  layers
have been purposed for applications beyond vision-based per-
ception.  In  this  work,  we  purpose  a  reconfigurable  dataflow
processor targeting multiple algorithmic kernels for both per-
ception  and  control.  Using  the  supported  kernels,  not  only
standard CNN but also compact CNN, ResNet, LSTM and deep
reinforcement learning algorithms can be constructed.

The  architecture  is  designed  with  a  separate  pool  of  PEs
and SRAMs, whose functionalities are instantiated based on lay-
er description through custom-designed ISA. Toolchains have
been  built  to  achieve  compatibility  with  state-of-the-art  AI
programming  framework.  Experiments  on  profiling  for  three
types  of  neural  networks  demonstrate  the  performance,  re-
source  utilization  and  special  design  features  against  the  In-
tel  processor.  The  taped-out  ASIC  under  65  nm  UMC  CMOS
technology with 16 reconfigurable PEs is also demonstrated.

Future  work  includes  optimization  techniques  regarding
resource  utilization,  power  consumption,  reliability  based  on
the design methodology.  Further  techniques  to  maximize re-
source  sharing  with  low  controlling  overhead  is  the  key  to
the enhancement of energy efficiency.
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